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Abstract

Light-duty vehicle transportation accounted for 17.2% of US greenhouse gas emis-
sions in 2012 [95]. An important strategy for reducing CO2 emissions emitted by
light-duty vehicles is to reduce per-mile CO2 emissions. While one approach is to
improve vehicle efficiency, greater reductions in emissions can be achieved by switch-
ing from gasoline vehicles to electric vehicles, if the electric vehicles run on electricity
from clean energy sources.

Batteries affect the consumer adoption of electric vehicles by influencing two im-
portant vehicle characteristics: cost and driving range on a single charge. The cost of
the battery is a significant fraction of total vehicle cost, and the battery’s energy ca-
pacity determines driving range. To lower battery costs and improve battery energy
capacity, further research is needed. To guide such research, several organizations
have created performance targets for batteries, including the Advanced Research
Projects Agency-Energy (ARPA-E) and the US Advanced Battery Consortium (US-
ABC).

The goal of this thesis is to assess these performance targets based on real-world
vehicle performance. A method is developed for estimating the energy requirements
of personal vehicle travel, which improves upon previous methods by accounting
for per-trip variation of vehicle energy consumption and analyzing data with wider
geographic scope. The method consists of a model of battery-to-wheel vehicle energy
consumption and a conditional bootstrap procedure for combining GPS travel data
with large-scale data from the US National Household Travel Survey.

The research finds that the distribution of energy requirements for US vehicle-
trips and vehicle-days (the sum of all trips taken in a day) has a heavy tail, namely
that a small proportion of long trips accounts for a disproportionately large amount
of energy consumption. Current electric vehicle batteries (2011 Nissan Leaf) can
satisfy 83% of vehicle-days, which account for 53% of all energy consumed in personal
vehicle travel, while batteries that meet the performance targets can satisfy 98 to
99% of vehicle-days, which account for 90 to 96% of energy. These results allow for
a quantification of the benefits of meeting performance targets for battery energy
capacity, which can help assess technology readiness and guide allocation of research
funding.

Thesis Supervisor: Jessika E. Trancik
Title: Atlantic Richfield Career Development Assistant Professor in Energy Studies
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Chapter 1

Introduction

1.1 Motivation: mitigating the climate impact of trans-

portation

The transportation sector is the second-largest contributor to greenhouse gas emis-
sions in the United States (US), and accounts for a large portion of energy consump-
tion. The US transportation sector accounted for 28% of total greenhouse gas emis-
sions in 2012 [103]. Light-duty vehicles1 accounted for 57% of these transportation-
related emissions, equal to 16% of all US greenhouse gas emissions [95]. As for energy
consumption, in 2012, light-duty vehicles accounted for 61% of the all transportation
energy consumption in the US [95]. Worldwide, transportation (including air travel)
accounted for 27% of final energy consumption [46].

A transition from gasoline-powered to electricity-powered vehicles can reduce
emissions from the transportation sector by reducing the carbon intensity of the
primary energy sources used. Currently, most vehicles are powered by internal
combustion engines, which use gasoline and other petroleum-based fuels. In 2013,
petroleum-based fuels accounted for 92% of energy consumed by the US transporta-
tion sector [96]. Electric vehicles (EVs) emit zero emissions at the tailpipe, because
they operate on electricity from the grid. The only emissions associated with miles
driven in an EV are those resulting from generating the electricity consumed and
from manufacturing the vehicle. Thus, transitioning from gasoline-powered vehi-
cles to EVs would reduce the carbon intensity of energy used for transportation, if
low carbon sources are used for electricity generation [53, 112]. The combination of
a cleaner electricity sector and widespread adoption of electricity-powered vehicles
is one of the only ways to achieve aggressive emissions reductions in the personal
transportation sector [114].

Due to the role that EVs could play in mitigating climate impacts of transporta-
tion by displacing gasoline use, many studies have tried to quantify the potential
benefit of using them [51]. Depending on the method of analysis, the optimal ve-
hicle technology portfolio for reducing emissions and gasoline use consists of either
plug-in hybrids [53] or a combination of EVs and fuel cell vehicles [20]. However,
estimating the potential benefit from using EVs is difficult because of the number of

1e.g. automobiles, motorcycles, and light trucks under 8,500 lbs
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factors involved, such as the availability of charging, the lag in replacing the existing
vehicle stock, and the share of vehicle miles traveled that can be supplied by plug-in
vehicles [108]. In addition, EV cost-competitiveness is highly sensitive to driving
patterns [69]. This thesis contributes to the literature by addressing the variation in
EV performance due to driving patterns, which is important for assessing the ability
of EVs to meet energy requirements for vehicle travel.

1.2 Research objectives

This thesis poses the question, “are current targets for the energy capacity of EV
batteries high enough to meet the demand for travel, based on large datasets on
driving habits?” The research focuses on transportation in the US. To answer this
question, a method was developed for estimating the energy required for personal
vehicle travel that both represents driving patterns in detail and covers a wide scope.
The development of the method was the majority of the work for this thesis, and is
the core contribution made. The method has two main parts: a model for vehicle
tractive energy (amount of energy required at the wheel to move the car, based on
drive cycles) and battery-to-wheel efficiency; and a conditional bootstrap procedure
for combining detailed GPS data with large-scale cross-sectional travel survey data,
from the US National Household Travel Survey. Also, the tendency of rounding trip
distance and duration values in travel survey responses is corrected for. Next, a com-
parison of existing performance targets with the results of the method is presented,
followed by a discussion of how an improved understanding of personal vehicle travel
can be used to better inform performance targets, policy decisions, and evaluation
of electric vehicle battery technology.

The intended audiences for this thesis are people interested in climate change
policy or electric vehicle policy, and researchers studying the energy consumption of
vehicular travel. Electric vehicle designers may also be interested in this work.

1.3 Thesis structure

The structure of this thesis is as follows. Chapter 2 provides background and a
literature review on relevant topics. Chapter 3 describes the data that is used in
developing the model and the travel surveys that are studied. Chapter 4 describes
in detail the model that was developed to estimate energy requirements of vehicular
travel. It has several sections to cover all components of the method and is longer
than the others, because the development of the model was a large portion of the
work for this thesis. Chapter 5 presents the results generated by the model, and
Chapter 6 discusses the results and their relevance to policy. Chapter 7 summarizes
the conclusions reached in this research.

This thesis was written by me, with guidance from Professor Trancik. The re-
search contained in this thesis, especially the development of the method, was the
result of a collaboration with other members of the Trancik Lab, including Profes-
sor Jessika Trancik, James McNerney, and Zach Needell. Much of this work will
also be published in a paper at a later date [61], which may contain updates to the
quantitative results presented here.
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Chapter 2

Background

This chapter provides context for the work presented in this thesis. First, Section 2.1
covers general background information about electric vehicles. Next, in Section 2.2,
battery technology is explained in more detail, which will be useful to understand
the method development in Chapter 4. Section 2.3 provides an overview of public
policies that address electric vehicles, which will provide context for the discussion
of performance targets in Chapter 6. Finally, Section 2.4 provides an overview of
previous work in this area.

2.1 Electric vehicles

The increased adoption of electric vehicles is one strategy to reduce greenhouse gas
emissions and mitigate climate change. This section provides the basic information
about electric vehicles needed to understand this topic.

2.1.1 Types of electric vehicles

This subsection presents an overview of electric vehicle technology and the different
types of electric vehicles. The distinction between different types of electric vehicles
is an important one to make, because a vehicle’s source of energy defines its lower
limit of possible emissions intensity, and thus its potential to reduce emissions.

Vehicles that can charge their battery from the electricity grid are plug-in electric
vehicles (PEV), a category that includes both plug-in hybrid electric vehicles (PHEV)
and all-electric vehicles (AEV), also called battery electric vehicles (BEV). Another
method of classification is by level of hybridization, which describes the functionality
of the electric drivetrain. The general term hybrid electric vehicles (HEV) refers
to vehicles with both an internal combustion engine and an electric motor. Some
hybrids can run on the electric motor alone, and these are called full hybrids or strong
hybrids. In mild hybrids, the electric motor is not strong enough to power the car
alone, and instead only provides power to the internal combustion engine in high-
demand situations, such as starting the car from a standstill. PHEVs, also known as
“range-extended electric vehicles,” are strong hybrids with plug-in capability, and are
usually designed to run solely on electricity for short driving ranges (up to around 30
miles) and the internal combustion engine for longer ranges. Since PHEVs use two
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fuel sources, the optimal design of PHEVs faces complex trade-offs [33]. Collectively,
all of these vehicle types are known as electric drive vehicles. All electric drive
vehicles can improve efficiency by using regenerative braking, in which braking force
is achieved by converting the kinetic energy of the vehicle into charging the battery.
Additional detail on the types of electric vehicles and powertrain architectures is
available in textbooks [63].

The most commonly used energy storage system for electric drive vehicles is
the electrochemical battery. Section 2.2 explains the workings of batteries and the
state of the technology. While batteries are the most popular, other forms of energy
storage are also being considered, such as fuel cells, ultracapacitors, flywheels, and
flow batteries [109, 22].

This thesis focuses on BEVs because of their higher potential to achieve the
aggressive emissions reductions goals required to meet climate change mitigation
targets, since they run on electricity alone. In addition, the results of the analysis
for BEVs would also apply to the capabilities of PHEVs in all-electric mode.

2.1.2 Scalability of electric vehicles

Current adoption levels of electric vehicles are low. In 2013, there were 96,000 plug-in
electric vehicles sold in the US, representing around 0.6% of the total vehicle market
of 16.5 million vehicles in the US [52]. The two biggest hurdles to the widespread
adoption of electric vehicles are cost and driving range, both of which relate to the
battery. Other hurdles include the perceived need for public recharging stations,
consumer purchasing inertia, and impacts on the electric grid.

The battery is a large portion of the manufacturing cost of an EV, and the
battery’s energy capacity is the limiting factor for range. For example, an EV’s
battery can constitute up to half of vehicle production cost, up to $16,000 [34].
Therefore, there is much agreement that innovation in batteries is needed for EVs
to become widely used [93, 7, 19]. However, the amount of performance required in
different categories is still a topic of debate.

One factor related to the concern about driving range is the availability of public
recharging stations. Increased availability of rapid recharging stations in public areas
or at workplaces, where EVs can be quickly refueled on-the-go, would effectively
increase driving range. More frequent charging would enable greater petroleum
displacement by PHEVs, at the cost of faster battery aging [60]. The relative need
and utility of charging stations is related to the typical ranges that batteries can
provide. Government support may be crucial for successful deployment of charging
stations [48].

Consumer purchase patterns are another factor in achieving widespread adoption.
Much attention has been given to plug-in hybrids for this reason, because they are
palatable to current expectations that one car should be able to satisfy both short-
and long-range driving. Understanding market niches may help producers make
vehicles more useful. For example, BEVs may be more feasible in suburban areas,
due to longer driving distances leading to more customer savings through lower
fuel prices, as well as additional room to install charging equipment [82]. Market
conditions also influence the rate of deployment of electric vehicles, such as oil prices
[13].

12



The potential widespread use of electric vehicles poses some additional concerns.
Large-scale adoption of EVs could run into materials availability issues, specifically
for lithium, cobalt, and nickel, which are key components of current batteries [19].
Large-scale and simultaneous charging of vehicles could pose problems for the electric
grid [87]. Studies of actual EV customer charging behavior showed a large peak for
evening charging at home, with the potential of causing dirtier or less-efficient power
plants to come online to meet the demand [80, 49]. However, despite the additional
load that electric vehicles impose, they may offer a benefit in acting as storage for the
grid, to improve stability and utilization in cases of high penetration of intermittent
sources.

2.2 Batteries for electric vehicles

2.2.1 Basics of battery science

While a full explanation of how batteries work is beyond the scope of this text, it is
important to highlight here the aspects of battery technology that affect the metrics
and targets of interest. Most of the following information comes from the review
paper by Cairns [19]. For more details, refer to the original paper, or one of these
three textbooks [44, 54, 77].

Batteries are reversible electrochemical systems that function as energy storage
devices. Batteries provide energy in the form of electrical charge. Battery capacity is
expressed as charge, in units of ampere-hours. A battery’s currently stored capacity
is often expressed as a fraction of full capacity, and is called “state of charge”, or
“depth of discharge”.

The amount of energy (or charge) that can be extracted from a battery is not
a constant quantity. Environmental factors and the speed of discharge can affect
the efficiency of the battery pack, effectively changing the amount of energy or
charge lost while discharging. These efficiency losses are due to resistances within
the battery cell, such as increased crystal formation or side reactions. The general
trend is that higher discharge rates correspond to higher internal resistance, and
thus lower battery efficiencies. High temperatures can lower the internal resistances,
but increase battery aging.

Batteries in practice exist as either small units called battery cells, or larger
assemblies called battery packs. For electric vehicle applications, many individual
cells are assembled into larger packages called battery packs, in order to create a
system with the appropriate amount of energy and power. In creating a battery
pack, maintenance systems must be added to ensure proper functioning of all the
cells, including mechanical support, electrical connections, controls, and cooling.
The total mass of a battery pack is often 50% more than that of the individual cell,
to account for these additional support systems.

The ratio of power to energy is sometimes more useful than total power or energy
in characterizing batteries, because the power-to-energy ratio is more fundamental
to a battery’s design. In a battery pack, total power and energy can be increased
by simply adding more battery cells of the same design, whereas changing the ratio
involves altering the design of the battery cell itself. The ratio of power to energy
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Figure 2-1: Ragone plot of current electric vehicle battery technologies. Data ob-
tained from [86]

is a trade-off faced at the materials and cell design level. For example, the amount
of “active material” in a battery determines charge capacity while the amount of
“current collectors” determines maximum discharge speed. Therefore, changing the
ratio of active material to current collector is one way to tweak the power-to-energy
ratio [77]. This is only one of many design choices in designing and optimizing the
performance of a battery. The power-energy tradeoff of a battery can be effectively
visualized in a Ragone plot.

A Ragone1 plot describes the performance of an energy storage device in the
power-energy plane. An example is shown in Figure 2-1. A single battery corresponds
to a curve on the plot, which shows its specific energy at various rates of discharge
power. Batteries have a characteristic downward-curving shape, since they produce
less energy at higher discharge power. This relationship comes from fundamental
physics principles [24, 74]. To be precise, there is no single-answer to “what is the
specific energy of this battery?”, because the specific energy (and power) depend on
how the battery is used [54]. When looking at a plot like this it is important to
differentiate between cell-level and system-level performance, since the addition of
necessary packing systems to make a full battery may significantly decrease energy
density or power density, especially for low-weight technologies [36].

2.2.2 Metrics for battery performance

The previous section explained some fundamentals about how batteries work. This
section covers the metrics used to measure battery performance, and the necessary
details to interpret them properly.

1Named after David V. Ragone, and pronounced “ru-GO-nee”.

14



Specific energy, which is the total energy stored divided by weight of the battery,
is the most important metric of battery performance for electric vehicles. It has
units of watt-hours per kilogram. A similar metric that is also often used is energy
density, which has units of watt-hours per liter. These metrics are useful because
they allow comparisons of batteries of different sizes on an equal footing.

Since energy is dependent on how the battery is used, technical metrics for energy
must be accompanied by a description of how energy is to be measured. Most metrics
specify the measurement of energy under a constant rate of discharge, expressed as
a proportion of the battery’s total charge capacity C, known as a “C-rate” [77]. For
example, for a 60 Ah battery discharging at a rate of C/3 would provide 20 A of
current. A rate of 2C would provide 120 A of current. If the capacity of 60 Ah were
rated at C/3, then a C/3 rate would last 3 hours, but the 2C rate would last less
than 0.5 hours, because of higher inefficiencies at the faster rate.

Specific power and power density are also metrics of interest. Like energy, power
ratings are also accompanied by usage descriptions, usually a combination of depth
of discharge level and pulse duration. For example, a specific power target might be
400 W/kg for 30 seconds at 80% depth of discharge (20% state of charge).

In addition to energy and power, there are plenty of other important metrics for
measuring the value of energy storage. Which metrics are important depends on
the application [64]. For electric vehicles, energy is the most important performance
requirement, but others are also relevant. These include cost, life, temperature,
safety [17]. For example, nickel-cadmium batteries may not be suitable for use in
EVs because of cost and toxicity issues [77]. Other relevant metrics include rate of
self-discharge, availability of materials, and the need for maintenance. Managing
trade-offs between performance in individual metrics is important in battery design,
in order to achieve acceptable performance in all metrics.

For batteries to be able to be used in electric vehicles, they need to meet a
variety of performance requirements. Designing batteries to meet all performance
requirements is constrained by inherent trade-offs between the five main battery
attributes: energy, power, cost, longevity, and safety. Meeting one or two of these
requirements is easy, but meeting all five at once is difficult. For example, higher
power can be achieved through the use of thinner electrodes, but these designs reduce
cycle life and safety and increase material and manufacturing costs. In contrast, high
energy can be achieved with thicker electrodes that also increase safety and life, but
reduce power density [12]. Another such trade-off is that increasing the useable
state-of-charge window decreases battery life [59].

2.2.3 State of battery technology

This section provides a brief overview of current and upcoming battery technologies
for EVs. Currently, electric vehicles are predominantly powered by either the nickel
metal hydride (NiMH) chemistry or lithium-ion (Li-ion) chemistry [19]. NiMH is
cheaper on a per-kWh basis than Li-ion, but Li-ion has higher energy density. Thus,
NiMH is often used in hybrid vehicles, whereas Li-ion is preferred in PEVs, where
the battery capacity needs to be higher. Li-ion cells can be made with a variety of
materials for the anode and cathode, with varying advantages in capacity, cycle life,
safety, and cost.
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Development of new batteries is mainly focused on reducing cost and improving
performance, reliability, and life [93]. The main cost drivers for batteries are the
high costs of raw materials and materials processing (up to 60%), cell and module
packaging, and manufacturing. In addition, the battery for an EV can account for
up to two-thirds of the manufacturing cost of the vehicle [114]. Advances in electric
vehicle batteries are crucial in reducing the cost of meeting climate targets [16].

Incremental improvements to lithium-ion batteries are mostly focused on inno-
vation in electrode materials and design to improve capacity and voltage. Also im-
portant are advances in electrolyte that improve stability, safety, and cycle life. For
more details, including a table describing the performance of existing and forthcom-
ing technologies, refer to the US DRIVE Partnership’s report [93]. Energy densities
may need a two-fold and five-fold increase in order to provide all-electric ranges for
PHEVs of 40 to 80 miles and for BEVs of 300 to 400 miles, respectively [88].

In addition to advances in the lithium-ion chemistry, a variety of “beyond lithium”
technologies could potentially offer large advances in performance, including lithium-
sulfur, magnesium-ion, and sodium-oxygen [107]. Solid-state lithium-ion is another
technology that can improve specific energy. Each has its own advantages and ob-
stacles, but these “beyond lithium” technologies could potentially increase energy
densities or reduce costs by double or more.

2.3 Public policy addressing electric vehicles

2.3.1 Overview of policies

There currently a number of public policies addressing electric vehicles in the US,
both at federal and state levels. This section provides an overview of these policies.

The current US administration has expressed interest in reducing greenhouse gas
emissions, and as part of this effort it supports electric vehicles in several ways. In
March 2012, the US Department of Energy announced a 10-year vision for PEVs,
called the EV Everywhere Grand Challenge, which aims to produce affordable and
convenient PEVs by 2022 through supporting battery research and deployment of
charging stations [92].

Most of the government support for electric vehicles is through supporting battery
research. The DOE spends a significant amount supporting battery research and
other research related to electric vehicles. Ability to meet technical performance
targets is an important criterion for proposed research projects to receive funding
[7]. A detailed overview of these performance targets is provided in Subsection 2.3.2.

Another form of support are government-led demonstration projects, which help
accelerate EV deployment by supporting and troubleshooting the early commercial-
ization stages. In 2010, the US General Services Administration procured 116 EVs
for use in their own vehicle fleet, providing usage data and increasing EV exposure
[105]. In addition, 75% of light-duty vehicle acquisitions must be alternative fuel
vehicles, such as plug-in electric vehicles2. In 2009, the DOE launched “The EV
Project,” which provided funding for deploying residential and public charging sta-
tions for EVs, to test out business models for EV infrastructure, and collect EV

2https://www2.unece.org/wiki/download/attachments/5801244/EVE-05-12e.pdf
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usage data [30]. However, the company that won the $99.8 million grant, ECOtality,
went bankrupt in 2013, demonstrating that there are still challenges to be overcome
in business models for public vehicle charging.

Purchase subsidies and other consumer incentives also play a large role in making
EVs more affordable. A federal tax credit of up to $7,500 is available to purchasers
or leasers of plug-in vehicles [106]. Many state-level incentives, such as California’s
Clean Vehicle Rebate Project, also offer rebates for buying or leasing qualified EVs.
Other types of incentives include access to carpool lanes when driving alone, such
as in California. A database of such state-level incentives is available online [39].

Emissions regulations are another way of using regulatory incentives to support
EVs. Electric vehicles, with their high equivalent gas mileage, are at an advantage
to help car makers meet US EPA’s Corporate Average Fuel Economy (CAFE) stan-
dards. At the state level, California’s Low Carbon Fuel Standards (LCFS), offers a
similar incentive. This policy, which took effect in 2011, set a target of 10% reduc-
tion in the carbon intensity of the transportation fuel mix by 2020 - a target which
electric vehicles could help meet. However, this policy could be more effective at
incentivizing the use of electric vehicles by adjusting some aspects of its implemen-
tation [113].

2.3.2 Existing performance targets for electric vehicle batteries

The funding of battery research is a key policy that supports electric vehicles. Per-
formance targets are often used as a key criterion for making funding decisions.
This section examines examine existing performance targets for electric vehicles, the
organizations that set the targets, and how the targets were chosen.

Performance targets for EV technology describe the desired performance in quan-
titative terms through specific technical criteria. They specify target categories, such
as energy density, power density, lifetime, etc., and a quantitative target for each.
The choice of category may vary for depending on either technology or policy appli-
cations. Total energy targets are more relevant to designers of vehicles and battery
packs, whereas the specific energy targets are more relevant to basic battery research
and cell design. There is also a distinction between system-level and cell-level goals.
Most organizations include targets for both. Cell-level targets may be more useful
for battery researchers, because they are closer to the level of research that they are
doing.

This thesis will focus on discussing targets set by organizations in the US, be-
cause the US has published the most technically specific performance targets. So far,
there are two organizations in the US that publish battery targets: the U.S. Advanced
Battery Consortium (USABC) and the Advanced Research Projects Agency-Energy
(ARPA-E). The USABC is part of the US Department of Energy’s government-
industry partnership called US DRIVE, which stands for Driving Research and In-
novation for Vehicle efficiency and Energy sustainability3.

The USABC, formed in 1991, is a team under the US Council for Automotive
Research (USCAR) that focuses on energy storage for vehicles, and operates as
a partnership between three major US car makers - Ford, Chrysler, and General

3http://www.uscar.org/guest/partnership/1/us-drive
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Motors4. They publish a variety of targets for different applications [91]. The set
of targets relevant for this work is their EV battery targets [90], and is shown in
Table 2-1 and Table 2-2. These EV targets are also used by US DRIVE in planning
their research efforts [93]. The USABC’s PHEV targets are supported by a published
study that uses expert knowledge from industry insiders and standardized test cycles
[75]. However, no such study is available for the BEV targets.

In 2010, the Batteries for Electrical Energy Storage in Transportation (BEEST)
program of ARPA-E had a Funding Opportunity Announcement that listed several
technical requirements, much of it based on USABC’s targets. The announcement
can be found here [7], and the targets in question can be found on page 13 (“Technical
Requirements”). The targets are reproduced in Table 2-1. Meeting the first three
targets in the table, relating to energy density and cost, is mandatory to receive
funding. ARPA-E has put emphasis on these targets because they are the most
important for batteries, as explained earlier.

For both the ARPA-E and USABC, performance targets were used as funding
criteria. The USABC targets, being more recent, are more ambitious. However,
it is interesting to notice that the requirements for “long-term commercialization”
have changed over time, as the targets are revised. In addition, the USABC targets
have more technically-detailed categories, likely because USABC is a battery-focused
industry group and has more subject area expertise.

In addition to the technical targets described above, high-level targets can be
useful as well, such as a target for all-electric range. In 2006, President Bush’s State
of the Union Address proposed a target of 40 miles of all-electric range for PHEVs,
which formed the basis for USABC’s technical targets [75]. A target for range has
the advantage of being easily evaluated on the basis of consumer utility, which is
done by many of the studies covered in Section 2.4. However, they are hard to use
to measure technology progress, until converted into technical metrics.

2.3.3 Other uses of performance targets in policy

In addition to their use funding criteria, performance targets can also be used as a
communication tool between scientists to develop a research agenda, to coordinate
action between organizations, and to measure technology progress to improve accu-
racy in planning for the future. First, the technical targets can help at the lab bench
scale, by helping to communicate the requirements for batteries across scales and
fields of research. Detailed technical performance targets could be used as a guide
for researchers, and could act as a measure of the downstream utility of upstream
technology advances. For example, a lab developing new battery materials could
decide whether to focus on improving the energy density or power density of their
new material, depending on the size of the shortfall in meeting either performance
target.

Secondly, performance targets can be used to aid coordination between different
actors, such as between government entities, or government and industry, etc. A
simple performance target, such as ARPA-E’s $250/kWh goal, could be used as a
way to improve intergovernmental coordination, similar to how a simple cost per

4For additional information on the USABC, see [68].
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Real-world
drive cycles

Pseudo-
naturalistic
drive cycles

Standardized
drive cycles

No energy estimation [73], [50]
Simple analytical vehi-
cle model

[20], [10]

Computer simulation [37], [6] [14] [53], [32], [84],
[75]

Other [65] [55]

Table 2-3: Vehicle energy estimation methods, for selected papers. The term
“pseudo-naturalistic” refers cycles that are modified or synthesized to better rep-
resent reality, but are not data recorded from real driving.

energy target was previously used in the DOE’s solar energy initiatives [114].
Thirdly, the performance targets provide a benchmark for measuring techno-

logical progress and the size of the performance shortfall, which is helpful in policy
planning. In the case of EVs, it is crucial to understand the current performance, the
desired performance, and the difficulty of bridging gap between the two. Without a
proper understanding of technology performance, policymakers would overestimate
or underestimate the commercialization barrier, which could mislead policy. The
same need applies to hydrogen fuel cell vehicles [57]. Such technology evaluation is
important for segmental approaches to climate change policy, by controlling the risk
of overshooting climate targets due to technological uncertainty [89].

2.4 Previous studies of vehicle travel and energy con-

sumption

2.4.1 Vehicle per-mile energy consumption

Estimating the per-mile energy consumption of vehicles is an important part of
many studies in this research area. In general, creating an estimate of per-mile
energy consumption requires two parts: a physics model of vehicle dynamics and
a description of vehicle usage patterns, such as drive cycles. Therefore, studies
that create their own estimate of energy consumption (either as the goal of the
study or as an intermediate step) can be separated along these two dimensions.
The drive cycles used to represent vehicle usage paterns can come from naturalistic
(real-world) data, pseudo-naturalistic, or standardized cycles, and the physics models
range in complexity from the basic physics model [10] to more complicated computer
simulations. Table 2-3 shows a few papers along these dimensions. For comparison,
the table also includes studies on driving patterns that use GPS data for drive cycles,
but do not estimate energy.

While standardized drive cycles are easy to use and are more convenient for
others to replicate, they have the drawback of not being representative of real-world
driving patterns. In Europe, fuel consumption predictions from standardized drive
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cycles in Europe are 21% lower than real-world use, partially because standardized
drive cycles fail to represent real-world driving [65]. Another study uses St. Louis
GPS dataset of 227 vehicles to estimate PHEV energy consumption with a vehicle
simulation called ADVISOR [37]. They compare the performance of their simulated
vehicles on the real-world drive cycles with the USA standard drive cycles, and find
that gasoline vehicles tend to consume more energy in the real-world cycles than the
standardized ones, whereas PHEVs consume less energy in real-world cycles than
the standardized ones. Another simulation of electric vehicle design showed that
designing a vehicle with the standard UDDS cycle in mind would lead to under-
performing in real-world driving [31].

This evidence shows that estimates of energy differ between standardized and
real-world drive cycles. Therefore, to make accurate estimates of vehicular energy
use, a method based only on standard drive cycles would be inaccurate. Approaches
that don’t account for the natural variation in travel are not detailed enough to offer
insight on the effectiveness of performance targets, since evaluating targets requires
higher technical accuracy. However, there is no consensus about how to account for
real driving style’s impact on energy.

As an alternative to using real-world drive cycles directly, some studies have tried
to synthesize their own drive cycles, to overcome the limited availability of real-world
cycles. One such study proposes a method to synthesize pseudo-naturalistic drive
cycles from real-world drive cycles [55]. Another group of studies have tried to
create synthetic drive cycles to aid in estimating vehicle energy usage. One study
used road test data to create synthetic drive cycles to infer necessary battery sizes
for particular driving ranges [6]. Instead of creating drive cycles, this study used
principal component analysis to identify characteristics of standard drive cycles that
impact energy consumption to circumvent the need for naturalistic drive cycles in
designing power control strategies [32]. Another study uses statistical techniques to
generate synthetic drive cycles from real ones [56].

2.4.2 Applications of understanding energy consumption

There are a variety of purposes why an understanding of the energy consumption of
vehicles is useful. This section gives an overview of the various applications, but due
to the breadth of applications, this list is not exhaustive.

One goal of studying vehicle energy consumption is to understand the factors that
influence it, which can inform strategies for reducing energy use. Analyses of vehicle
energy consumption based on drive cycles suggest that changes to traffic policy and
human behavior can reduce vehicular energy consumption [9]. In particular, reducing
accelerations and cruising speeds can reduce fuel consumption [14].

Energy consumption analyses can also be used to evaluate and compare vehi-
cle technologies. For example, variation in how vehicles are used can affect the
rank order of primary energy consumption for alternative vehicle technologies [20].
Energy consumption is also an important factor in designing PHEVs for maximum
petroleum savings [84], designing battery size [6], designing an ideal all-electric range
for PHEVs [84, 108], or modeling battery degradation during vehicle use [56]. In ad-
dition, the economic and environmental benefits of EVs vary substantially when
calculated under different drive cycles, suggesting that a segmented approach (e.g.
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separating urban drivers from highway drivers) for marketing EVs and considering
policy impacts may be more effective [47].

2.4.3 Studies of driving patterns

Another body of work studies the performance of EVs and PHEVs on the basis on
driven distance alone, without accounting for the energy needed to meet those driving
ranges. Several papers have studied the feasibility of EVs and PHEVs to meet travel
demands by studying the proportion of travel needs met with limited range vehicles,
based on distances traveled in current driving patterns [50, 73]. These studies focus
on distance only, without relating it to the necessary energy capacity of the batteries.
Both of these studies are similar. They are both based on longitudinal GPS data,
which has a small vehicle sample size (255 and 484), but follow their subjects for
a whole year. They try to segment the market by studying the number of times
trip distance exceeds a certain amount. For example, a 100-mile range EV could
meet the needs of 17% of drivers if adaptations were made for 2 trips longer than
100-miles, and 32% of drivers if adaptations were made 6 times a year [73]. Also,
a 100-mile range BEV would meet the needs of 50% of one-vehicle households and
80% of multiple-vehicle households [50]. However, these papers treat the technology
like a black box, and do not address the question of how much EV battery capacity
is needed to provide for the given driving ranges.

Many studies have focused on the potential to replace miles driven with a finite
all-electric range and limited charging [108]. This study makes the simplifying as-
sumption that PHEVs that are powerful enough to drive in pure electric mode under
all driving conditions, instead of directly calculating power and energy requirements.

Although many studies do not address the question of energy requirements, the
methods they use are useful, because data on miles driven is more readily available
and easier to collect. However, their results have the drawback of high sensitivity
to assumptions about vehicle energy consumption and driving patterns. In PHEVs,
the battery capacity defines the threshold between zero tailpipe emissions and using
gasoline. Since usable battery capacity depends on how the vehicle is driven, the
climate mitigation potential of PHEVs are particularly sensitive to driving patterns.
Therefore, estimating energy consumption accurately and accounting for real driving
patterns are even more important.
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Chapter 3

Data

This chapter provides an overview of the data that will be used as inputs to the
model and the analysis. The first section covers the three types of data required
for the model: drive cycles from GPS-based travel surveys, vehicle specifications,
and fuel economy measurements. The second section describes the 2009 National
Household Travel Survey, which provides data on travel patterns and is the focus of
the analysis for the thesis.

3.1 Model parameters

3.1.1 Drive cycles from GPS-based travel surveys

Detailed data on personal vehicle travel from a GPS-based travel survey is used. The
data field of particular interest is the “drive cycle” of typical vehicle trips. The drive
cycle, sometimes called driving cycle, is a record of the vehicle’s instantaneous speed
at regular intervals throughout the duration of trip. This detailed data allows us to
estimate the energy consumed during the trip. For each trip, the travel survey also
provides other information, such as time of day, demographic information about the
survey respondent, etc.

The GPS-enabled travel survey used is from the 2010-2012 California House-
hold Travel Survey, conducted by the California Department of Transportation.
This dataset is available for free from the National Renewable Energy Laboratory’s
(NREL) Transportation Secure Data Center website [67]. The survey’s GPS sub-
sample contained 2,908 vehicles with 65,623 vehicle trips. For each vehicle, data
was collected for 7 days. The speeds in the drive cycles were measured at a rate
of 1 Hz, or every second. The data used is not the raw GPS data, but a cleaned
version that NREL processed with a data filtering algorithm to filter out errors, such
as unrealistic speeds, and to interpolate for missing data. More information on the
data filtering process can be found here [29, 18].

The sampling rate can be a point of concern for GPS data. The data used for
this analysis is measured in 1 second intervals, but one might ask, “is this sampling
frequency high enough?” While this question is not directly answered in the analy-
sis, data with 1 Hz sampling frequency should adequately represent reality because
typical driving events (e.g. accelerations) last longer than 1 second and would be
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well approximated by 1 Hz data.
Another point of concern is differences in driving habits between regions. Since

only the California dataset is used, these regional differences would not be observable
in our analysis. There are some other GPS-based travel surveys from Texas and
Atlanta, which are also available on NREL’s website, but the California dataset was
chosen because it is the most up-to-date and is of higher quality than the other ones.
Regional differences in driving would only impact the model if trips of the same
distance and duration had different energy consumption between regions. Different
regions would be expected to have different distributions of trip distance and trip
durations, but this in itself would not impact the results, for reasons explained in
Chapter 4.

3.1.2 Vehicle specifications

The proposed method for estimating a vehicle’s energy requirement for a trip requires
knowing its specifications, such as mass and air drag coefficient. The analysis in this
thesis focuses on only one vehicle model, the 2011 Nissan Leaf. It was chosen because
it has been the highest selling BEV in the US for the last 3 years [45], with the runner-
up being the Tesla Model S. The Leaf was the first BEV that was designed to be
affordable, in the hopes of wider adoption, so it is appropriate to use because the
analysis will make conclusions about increasing EV adoption.

The vehicle specifications for the 2011 Nissan Leaf that are relevant to the model
are shown in Table 3-1. Official Nissan sources don’t provide all of the data required
for the method, so other sources must be used for certain parameters. The sources
used were: 2011 Europe Nissan Leaf Technical Data [71]; a blog post that cites
Nissan Leaf specifications [25]; a vehicle design textbook, for a typical value of rolling
resistance for passenger cars on concrete [35]; EPA fuel economy data [101]; news
sources [81, 110]; and a Nissan Leaf First Responder’s guide [70]. Dynamometer
coefficients are obtained from the EPA Test Car data website [99], which contains
data that is mostly provided by automobile manufacturers.

3.1.3 EPA fuel economy measurements

Vehicle fuel economy is used in the model to help estimate vehicle efficiency, as
well as to validate aspects of the model. The fuel economy data used is published
by the US Environmental Protection Agency (EPA), available online [101]. The
EPA’s fuel economy data is obtained from either in-house EPA measurements or
from verified manufacturer tests [97]. The testing procedure uses dynamometers to
simulate driving in a controlled environment [98]. The dataset also contains other
useful information, such as all-electric range and electric motor power.

This dataset provides the fuel economy of the 2011 Nissan Leaf, the vehicle of
used in the model. Fuel economy for electric vehicles is expressed either in terms of
mileage (miles per gallon equivalent) or as energy consumption (kilowatt-hours per
mile). These values are calculated from the amount of electricity used to recharge
the vehicle after a test run. The EPA follows the SAE J1634 standard procedure for
measuring BEV fuel economy with AC recharging [4]. While SAE J1634 provides
standard procedures for measuring BEV fuel economy via both AC recharging energy
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Table 3-1: 2011 Nissan Leaf vehicle specifications.

Parameter Value Source

curb weight (𝑚) 1,525 kg [25, 71]
rolling resistance (𝜇𝑟𝑟) 0.015 (passenger car on concrete) [35]

frontal area (𝐴) 2.27 𝑚2 [25]
drag coefficient (𝐶𝑑) 0.29 [25, 71]

motor power 80 kW [25, 71]
motor max torque 280 Nm [25, 71]

motor type AC synchronous [25, 71]
transmission single speed gear reduction, 7.9377 [25, 71]
tire size P205/55R16 [25, 71]

battery capacity 24 kWh [25, 71]
battery voltage 345 V [25, 71]

battery pack weight 648 lbs (294 kg) [70]
battery weight, cells only 171 kg [derived]
specific energy of cells 140 Wh/kg [81, 110]

battery type laminated lithium-ion [25, 71]
EPA all-electric range 73 miles [101]
unadjusted city mileage 151.5 MPGe [101]

unadjusted highway mileage 131.3 MPGe [101]
dynamometer coefficient, A 33.78 lbf [99]
dynamometer coefficient, B 0.0618 lbf/mph [99]
dynamometer coefficient, C 0.02282 lbf/mphÂš [99]
dynamometer test weight 3750 lbs [99]
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and DC discharge energy, the EPA uses only the former method because the latter
is expensive to implement.

The EPA publishes two sets of fuel economy measurements, adjusted and un-
adjusted. The unadjusted values are the raw measurements from the vehicle tests,
while the adjusted fuel economy has been shifted downward to represent the more
demanding driving conditions experienced in real life. This adjusted fuel economy is
the official EPA rating for vehicles. The adjustment is made using a prescribed for-
mula, called the “derived 5-cycle adjustment method”, which has a maximum value
of 30% [4]. The rules for this adjustment procedure, and EPA fuel economy labeling
in general, can be found in the Code of Federal Regulations (CFR) [2, 3, 1] and an
EPA report [100].

An alternate source for fuel economy measurements is the EPA Test Car dataset
[99], which contains individual results for the different EPA test procedures, with
data mostly provided by manufacturers. This research uses the first dataset because
its data matches to the official fuel economy ratings that appear on the EPA window
sticker for new vehicles.

3.2 US National Household Travel Survey

The data that will be studied with the model and used to produce the primary
results is the 2009 US National Household Travel Survey (NHTS). The NHTS is a
large cross-sectional dataset about all modes of travel in the United States, with
a sample size of 150,147 households and 740,846 automobile trips. This is a large
travel survey in the U.S. conducted by the Federal Highway Administration, in which
the respondents record their trips over a 24-hour period. Data is collected over an
entire year, and from all regions of the US. Characteristics for each trip entry include
trip distance, duration, mode, and other demographic variables such as household
income or population density of the area. The data is available online [104].
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Chapter 4

Model Development

For this thesis, a model was developed to calculate the distribution of requirements
for battery energy capacity, based on cross-sectional travel survey data, for a given
vehicle. This chapter describes how the model works, how it was developed, the
decisions made, and why it is appropriate for the analysis in this thesis.

To explain how the model calculates a distribution of battery energy require-
ments, this chapter walks through the modules in the model in increasing level of
abstraction, starting from the most physical level, a single trip. This overall flow
of the model is illustrated in Figure 4-1. The first step in the model is to pick a
vehicle. For the analyses in this thesis, the vehicle used is the 2011 Nissan Leaf,
an all-electric vehicle. Next, the model looks at a single vehicle-trip. If the second-
by-second speed achieved over the trip is known, physical principles can be used to
calculate the energy required at the wheels for the chosen vehicle to follow the same
trip, explained in Section 4.1. Next, an understanding of vehicle efficiency is used to
find the energy required from the battery to provide for the energy at the wheels, i.e.
tank-to-wheel efficiency, in Section 4.2. However, the NHTS data does not contain
the second-by-second speed data necessary for this procedure to be carried out. To
solve this, a conditional bootstrap procedure is developed in Section 4.3 that intel-
ligently finds matching GPS trips, which contain speed data, for each NHTS trip,
effectively combining the strength of both datasets. Each of the following sections
also validates its part of the method.

4.1 Tractive energy requirements of trips

This section discusses the most physical level of the model: calculation of tractive
energy for a trip. First, the definition of tractive energy is given, followed by the
formula used to calculate it, and a brief discussion of its physical interpretation. The
goal of this part of the model is to calculate the tractive energy requirement of a
given drive cycle for a vehicle.

4.1.1 Definition of tractive energy

Before defining tractive energy, other definitions must first be clarified. The term
“powertrain” refers to the components of a vehicle that generate power and deliver it
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Figure 4-2: Free-body diagram of longitudinal forces on a vehicle body in forward
motion, on level ground and in stationary air

to the road surface. For an electric vehicle, this includes the battery, motor controller,
traction motor, drive shafts, and wheels. A “drive cycle” is a series of data points
that record the speed of a vehicle over time, for a vehicle-trip.

The definition of tractive energy begins with tractive force. Tractive force, also
sometimes referred to as tractive effort, is defined as the force propelling the vehicle
forward, transmitted to the ground through the drive wheels [54, 35]. Tractive power
is tractive force multiplied by the velocity of the vehicle: 𝑃𝑡𝑟 = 𝐹𝑡𝑟𝑣. Tractive energy
of a trip is the integral of tractive power over the duration of a trip, the details of
which will be covered in the next section. Thus, tractive energy describes the amount
of energy required at the wheels for the vehicle to follow the given driven cycle. Note
that this is a separate quantity from the amount of fuel energy consumed during the
trip. Tractive energy can be aggregated over various vehicle-trips and vehicle-days,
to give an estimate of the amount of energy required in personal vehicle travel.

Tractive energy is a useful quantity to analyze because it is independent of the
technology used to propel the vehicle. As explained in the next section, it only
depends on the drive cycle and the bulk characteristics of the vehicle (mass, rolling
resistance, and air drag coefficient). This property makes tractive energy a useful
metric when comparing the performance of different technologies, because it largely
separates the impact on total energy arising from the drive cycle versus from the
propulsion technology used.

4.1.2 Physical model of tractive energy

To help explain the origin of tractive energy, this section builds up a physical model
for tractive energy from first principles. Using the free-body diagram of the force on
a vehicle shown in Figure 4-2, the net force on a vehicle under forward motion can
be written as:

𝐹𝑛𝑒𝑡 = 𝐹𝑡𝑟 − 𝐹𝑟𝑟 − 𝐹𝑑𝑟

where 𝐹𝑡𝑟 is the tractive force exerted by the car’s powertrain (positive if ac-
celerating, negative if braking), 𝐹𝑟𝑟 is the rolling resistance force, and 𝐹𝑑𝑟 is the
drag force. Note that this formulation ignores the hill-climbing force associated with
changes in elevation. This formulation is a common way to create a simple model
for the forces on a vehicle [58, 54]. The textbook by Gillespie [35] offers more details
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on the origins of these vehicle dynamics forces.
Using Newton’s first law, the net force on the vehicle can be replaced by mass

times acceleration:

(1 + 𝑞)𝑚𝑎 = 𝐹𝑡𝑟 − 𝐹𝑟𝑟 − 𝐹𝑑𝑟

The (1 + 𝑞) factor is added to represent rotational inertia in the vehicle, i.e. that
some amount of force is necessary to make the rotating parts of the car rotate faster
when the vehicle accelerates linearly. Most of this force is absorbed into the angular
momentum of the electric motor, which has high angular speeds.

The above equation can be rewritten to solve for the required tractive force, if
the drag force, rolling resistance force, and the acceleration of the vehicle are known:

𝐹𝑡𝑟 = (1 + 𝑞)𝑚𝑎 + 𝐹𝑟𝑟 + 𝐹𝑑𝑟

𝐹𝑡𝑟 = (1 + 𝑞)𝑚𝑎 + 𝜇𝑟𝑟𝑚𝑔 +
1

2
𝜌𝐴𝐶𝑑𝑣

2

The standard formulations for the rolling resistance and air drag forces have been
used. The coefficient of rolling resistance 𝜇𝑟𝑟 can be coarsely approximated with a
constant value, or modeled with a functional form that depends on velocity and other
vehicle conditions, as in SAE J24521 [38]. For empirical values of the parameters for
the 2011 Nissan Leaf, see Table 3-1 in Chapter 3.

To calculate the total amount of energy exerted by the powertrain over a given
driving cycle, the instantaneous power delivered by the powertrain must be calcu-
lated, and then integrated over the entire drive cycle:

𝑃𝑡𝑟 =
[︀
𝐹𝑡𝑟

]︀
+
𝑣

=
[︀
(1 + 𝑞)𝑚𝑎 + 𝜇𝑟𝑟𝑚𝑔 +

1

2
𝜌𝐴𝐶𝑑𝑣

2
]︀
+
𝑣

𝐸𝑡𝑟 =

∫︁
𝑑𝑟𝑖𝑣𝑒 𝑐𝑦𝑐𝑙𝑒

[︀
(1 + 𝑞)𝑚𝑎 + 𝜇𝑟𝑟𝑚𝑔 +

1

2
𝜌𝐴𝐶𝑑𝑣

2
]︀
+
𝑣 d𝑡

The notation
[︀
𝐹𝑡𝑟

]︀
+
means to evaluate the expression inside the bracket only

when it is positive, and set the expression equal to 0 if it is negative. This is im-
portant to include because only the energy expended by the powertrain should be
counted towards the tractive energy requirement, and not the energy lost to the
brakes (i.e. during negative tractive force). Energy recovered through regenera-
tive braking and spent for auxiliary uses (HVAC, lights, etc.) are accounted for in
powertrain efficiency, described in a later section.

To give a physical sense of the interaction of the terms in the tractive power
equation, the equation can be related to several physical regimes of vehicle operation.
Vehicle operation can be split into 3 different regimes, as described by An and Ross
[10]. The regimes are (1) “acceleration”, where vehicle acceleration is positive and
tractive force is positive; (2) “powered deceleration”, where acceleration is negative
but tractive force is positive; and (3) “braking”, where acceleration and tractive

1“Stepwise Coastdown Methodology for Measuring Tire Rolling Resistance”, http://standards.
sae.org/j2452_199906/
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force are negative. Intermediate regimes can be defined as well: “cruising”, where
acceleration is 0 and tractive force is positive; and “coasting”, where acceleration is
negative and tractive force is 0. These regimes are highlighted in several sample
drive cycles from the California GPS dataset in Figure 4-3. Note that powered
deceleration (blue dots) occurs more often while cruising at highway speeds.

4.1.3 Empirical formula for tractive energy

In the model used for this thesis, an empirical model is used to calculate tractive
energy. This model is known as the dynamometer road load equation, which uses
three coefficients (A, B, and C) that are obtained from empirical testing of vehicles
under standardized conditions. The previous physical model was presented as a
comparison, to help with physical interpretation of the empirical model presented
here. Previous studies of vehicle energy consumption have also used this empirical
formulation [58, 42, 66].

Instead of building a model of road load from first principles, an empirical rela-
tionship is used. Road load is defined as the sum of aerodynamic drag and rolling
resistance forces. Road load, as a function of vehicle speed, can be determined empir-
ically through a procedure called “coastdown testing”2. The coastdown test consists
of driving a car up to a high speed, such as 80 MPH, and letting it coast down
to a low speed in neutral gear while recording the vehicle’s speed over time. The
resulting trace of velocity can be used to find instantaneous acceleration, which is
used to find instantaneous force at each speed, which gives the road load. The road
load relationship is fit with a regression, using the following form:

Road load = 𝐹𝑑𝑟𝑎𝑔 + 𝐹𝑟𝑟

= 𝐴 + 𝐵𝑣 + 𝐶𝑣2

The original purpose of obtaining these coastdown coefficients is to calibrate
dynamometers to accurately reproduce the road load of vehicles. The EPA pub-
lishes coastdown coefficients for all commercially-produced vehicles in their Test Car
data files [99]. These coefficients are usually measured by the manufacturer, using
the Society of Automotive Engineers’s (SAE) standardized procedure for coastdown
testing, SAE J12633. In the Test Car data files, the EPA publishes two sets of ABC
coefficients, called “target” and “set”. The “target” coefficients refer to coefficients
that fit the coastdown data, while the “set” coefficients are adjusted values of the
“target” coefficients that are inputted to the chassis dynamometer to reproduce the
same road load as in the coastdown test. For the purposes of this work, “target”
coefficients are used.

Using this formula for road load, the tractive energy for a drive cycle can be
calculated by using a similar formulation as above, but replacing the physical air
drag and rolling resistance terms with the empirical form using the A, B, and C
coefficients. Tractive energy becomes

2https://hyundaimpginfo.com/resources/details/coastdown-facts/
3http://www1.eere.energy.gov/vehiclesandfuels/avta/pdfs/hev/htp001r2.pdf and http:

//standards.sae.org/j1263_201003/
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Figure 4-3: Sample drive cycles from the California GPS dataset. The three driving
regimes are highlighted colors: acceleration (green), powered deceleration (blue),
and braking (red).
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Table 4-1: Dynamometer coefficients for the 2011 Nissan Leaf. Source: EPA Test
Car list data [99]

A coefficient 33.78 lbf
B coefficient 0.0618 lbf/mph
C coefficient 0.02282 lbf/mph2

𝐸𝑡𝑟 =

∫︁
𝑑𝑟𝑖𝑣𝑒 𝑐𝑦𝑐𝑙𝑒

[︀
(1 + 𝑞)𝑚𝑎 + 𝐴 + 𝐵𝑣 + 𝐶𝑣2

]︀
+
𝑣 d𝑡

The values of the A, B, and C coefficients can be interpreted according to the
corresponding functional form from the physical model. As described in the Code of
Federal Regulations4, the A coefficient represents the constant friction term, the B
coefficient represents road load from drag and rolling resistance, which are a function
of vehicle speed, and the C coefficient represents aerodynamic effects, which are a
function of vehicle speed squared. The values of the dynamometer coefficients used
for the 2011 Nissan Leaf are shown in Table 4-1.

Note that this has an additional term that depends linearly on velocity, which
seems to be absent from the theoretical formulation above. The linear term corre-
sponds to the velocity-dependent component of rolling resistance, and to the drag in
the powertrain (e.g. friction in bearings). At low speeds, the coefficient of rolling re-
sistance changes linearly with speed, but at higher speeds it changes with the square
of speed, or speed to the 2.5 power, depending on vehicle and wheel type [35, 76].
Rolling resistance also depends on the level of tire inflation. Powertrain losses may
also be linear with speed because of viscous drag, e.g. oil in the wheel bearings [76].

4.2 Powertrain efficiency and battery energy

Next, an estimate for powertrain efficiency is developed, which will enable calculation
of the battery energy requirement from the tractive energy requirement. There are
many aspects of estimating powertrain efficiency, and developing an accurate esti-
mate requires careful consideration of how vehicle performance varies under different
conditions and how battery energy behaves.

This section first defines powertrain efficiency, explains how it is calculated with
GPS data and EPA fuel economy data, and finally validates the choice of method
and resulting value for efficiency. The value for the powertrain efficiency of the
2011 Nissan Leaf is shown in Table 4-2, along with intermediate steps used in the
calculation.

440 CFR 1066.210(1)(d). Accessed at http://cfr.regstoday.com/40cfr1066.aspx#40_CFR_

1066p210
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Table 4-2: 2011 Nissan Leaf cycle-averaged powertrain efficiency, with intermediate
steps used in the calculation

55% city / 45% highway com-
bined fuel economy

99 MPGe

Battery charger efficiency 90%
Total distance of all GPS trips 6.4021 × 105 miles
Total tractive energy require-
ment of all GPS trips

7.4829 × 1011 J

Cycle-averaged powertrain ef-
ficiency

106.20%

4.2.1 Definition of powertrain efficiency

The engineering definition of instantaneous powertrain efficiency (PTE) is defined
as the ratio of the tractive power (power transferred from the wheels to the road) to
the power being drained out of the battery.

instantaneous PTE =
tractive power

power drained out of battery

This efficiency accounts for the energy lost in the physical processes that connect
the stored energy in the battery with the work done by the wheels to move the
vehicle. This instantaneous powertrain efficiency varies with operating condition
(e.g. motor torque and rpm, battery discharge power), and so this will vary over the
course of a given drive cycle.

Building off of this definition, average powertrain efficiency for a given drive cycle
can be defined as:

[average PTE]𝑑𝑟𝑖𝑣𝑒 𝑐𝑦𝑐𝑙𝑒 =
[tractive energy required]𝑑𝑟𝑖𝑣𝑒 𝑐𝑦𝑐𝑙𝑒

[energy drained out of battery]𝑑𝑟𝑖𝑣𝑒 𝑐𝑦𝑐𝑙𝑒
(4.1)

By definition, average powertrain efficiency relates the actual energy drained
from the battery over a drive cycle with the tractive energy requirement defined in
the previous section. This average powertrain efficiency also varies between different
drive cycles. However, it is difficult to use this definition to calculate a different
powertrain efficiency for each drive cycle, because of the difficulty in estimating the
actual battery energy spent for a particular drive cycle.

Instead, powertrain efficiency is further aggregated into a single value to be used
for all drive cycles. This is labeled as the “cycle-averaged powertrain efficiency”, and it
represents the average powertrain efficiency across drive cycles normally experienced
in real-world driving:

cycle-averaged PTE =
average per-mile tractive energy spent in real-world driving
average per-mile battery energy spent in real-world driving
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It is important to note that powertrain efficiency, defined this way, can be greater
than 1 for vehicles with regenerative braking. Ott et. al proposes an alternate def-
inition of powertrain efficiency that addresses this issue and stays between 0 and
1, retaining the traditional meaning of efficiency [72]. However, the definition pro-
posed above is suitable for our purposes, because our method only requires some
representation of the relationship between tractive energy and battery energy.

The above definition of powertrain efficiency accounts for regenerative braking,
but other studies have suggested alternative methods that account for regenerative
braking separately from powertrain efficiency [15, 26, 43]. A possible advantage of
separating the two is to reduce the variation with respect to drive cycle for both
powertrain efficiency and regenerative braking efficiency [72]. Estimates of the frac-
tion of kinetic energy that is recoverable through regenerative braking range from
15% to 30% on standardized cycles, or to 50% for buses [77], while others claim the
limit is 40% [54].

4.2.2 Calculation of cycle-averaged powertrain efficiency

To calculate a value for cycle-averaged powertrain efficiency, the following equation
is used, based on the above definition:

cycle-averaged PTE =
𝐸𝑃𝑀 𝑡𝑟,𝐺𝑃𝑆

𝐸𝑃𝑀 𝑏𝑎𝑡𝑡,𝐸𝑃𝐴

where ¯𝐸𝑃𝑀 𝑡𝑟,𝐺𝑃𝑆 is the average per-mile tractive energy of trips in the GPS
dataset, and ¯𝐸𝑃𝑀 𝑏𝑎𝑡𝑡,𝐸𝑃𝐴 is the EPA’s estimate of the average per-mile battery
energy spent in real-world driving. By using this value, the total battery energy
spent in the GPS cycles is equal to the total tractive energy spent in the GPS cycles
multiplied by the EPA’s MPG estimate.

The value of ¯𝐸𝑃𝑀 𝑏𝑎𝑡𝑡,𝐸𝑃𝐴 is EPA’s combined MPG value. While the MPG
values were calculated from specific city and highway drive cycles, the EPA’s ad-
justment makes these MPG values representative of real-world driving. By using
this data for the calculation, the value of powertrain efficiency will be inherently
representative of real-world drive cycles, because the GPS trips represent real-world
drive cycles, and the EPA’s adjusted MPG value is the best approximation available
of the true MPG value over real-world drive cycles and real-world driving conditions.

Calculating average per-mile tractive energy of real-world trips. The
model for tractive energy based on the dynamometer coefficients is used to cal-
culate the average tractive energy per mile required for the GPS trips. For each trip
in the GPS dataset, the tractive energy requirement is calculated. Tractive energy
is then summed up for all trips in the GPS dataset and divided by the total distance
traveled to find the average tractive energy. This is the formula:

𝐸𝑃𝑀 𝑡𝑟,𝐺𝑃𝑆 =

∑︀
𝑖 𝐸𝑡𝑟,𝑖∑︀
𝑖 𝐷𝑖

where the sums are over all trips 𝑖 in the GPS dataset.
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Calculating average per-mile battery energy of real-world trips. The de-
nominator used is based on the combined MPG value from EPA, but a few correc-
tions to the published value must first be made. The formula used for the average
energy-per-mile required from the battery based on EPA data is

𝐸𝑃𝑀 𝑏𝑎𝑡𝑡,𝐸𝑃𝐴 = 𝜂𝑐ℎ𝑎𝑟𝑔𝑒 × 𝜌𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒 ×MPGe−1
𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑

where the battery charging efficiency is 𝜂𝑐ℎ𝑎𝑟𝑔𝑒 = 0.9 and the energy content
of gasoline5 is 𝜌𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒 = 33.7 kWh/gallon. The combined fuel economy in miles-per-
gallon-equivalent (MPGe) is a harmonic average of the city and highway assuming
55% and 45% driving shares, respectively, following the same formula that the EPA
uses6:

MPGe𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =

(︂
0.55

MPGe𝑐𝑖𝑡𝑦
+

0.45

MPGeℎ𝑤𝑦

)︂−1

The combined miles-per-gallon-equivalent fuel economy is meant to represent
real-world driving, which is assumed to have a mix of 55% city driving and 45%
highway driving.

The origin of the EPA’s published MPGe values makes these adjustments nec-
essary. The EPA’s measurement of energy consumption is the amount of electricity
used to recharge a vehicle after performing dynamometer tests7 of standardized drive
cycles until the battery runs out of energy [4]. The two drive cycles used are the
“Federal Test Procedure” (FTP) cycle, which represents city driving, and the “High-
way Fuel Economy Test” cycle, which represents highway driving. The two drive
cycles can obtained from the EPA Dynamometer Drive Schedules website8.

The EPA converts the raw measurements of energy consumption to MPGe val-
ues using 𝜌𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒 as the conversion factor and labels the results “unadjusted fuel
economy.” These are then adjusted downward (by a maximum of 30%) to repre-
sent performance under real-world driving conditions9. Further details in converting
EPA-reported MPG values to actual in-use MPG can be found in the EIA’s report
on their method for estimating fuel consumption in the 2009 NHTS, which includes
correcting for regional factors like geography [94].

Because the reported energy consumption is based on the energy required from
the wall socket to recharge the battery, the reported energy consumption or fuel econ-
omy numbers includes the efficiency of the battery charger. These “wall-to-vehicle”
losses are assumed to be 10%, the same as in EPA’s calculations of the emissions im-
pact of electric vehicles [102]. Therefore, the reported energy consumption numbers
are multiplied by 0.9. Other studies estimate that charging efficiency ranges from
around 80% [62] to 94% [26].

5http://www.fueleconomy.gov/feg/evsbs.shtml
6http://www.epa.gov/fueleconomy/documents/420f14015.pdf
7The SAE J2264 standard is used for dynamometer test procedures, available at http:

//standards.sae.org/j2264_201401/. The procedures are also described in 40 CFR 1066, avail-
able at http://cfr.regstoday.com/40cfr1066.aspx#40_CFR_1066

8http://www.epa.gov/nvfel/testing/dynamometer.htm
9More information about EPA procedures can be found at http://www.epa.gov/otaq/

carlabel/regulations.htm
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Assumptions made in this method. The proposed definition of powertrain
efficiency makes a few assumptions that may affect its accuracy. The calculated
powertrain efficiency is calibrated by the EPA’s adjusted estimates of fuel consump-
tion, which are assumed to represent real-world driving. The GPS drive cycles are
assumed to be unbiased and representative of real-world driving as well. In addi-
tion, auxiliary power consumption is included as part of powertrain efficiency, and
not treated separately. Imperfect data about the trips limits how accurately pow-
ertrain efficiency can be calculated. Many factors that impact powertrain efficiency
are unknown, such as ambient temperature (especially important for EV batteries),
vehicle temperature at the start of the trip, and weight of passengers and cargo
(although mass may have a small effect [21]).

4.2.3 Powertrain efficiency validation

To double-check the calculated value for powertrain efficiency of the 2011 Nissan
Leaf, it is compared to those found in the literature. The definition of powertrain
efficiency used here is often referred to as “tank-to-wheel” efficiency in the life-cycle
assessment literature, and is usually close to 80% for battery electric vehicles [112,
40, 41, 27, 20]. A greater range of powertrain efficiency values are reported by
other sources. These include 88% for the Tesla Roadster10, a BEV; 71% for Li-ion
vehicles, based on component-wise efficiency estimates [8]; or a range of 55% to 92%,
depending on HVAC usage and ambient temperature, based on tests of real vehicles
on standardized cycles and [26]. While our value for efficiency is higher, it is in
alignment with these other sources, because of differences in definition.

A laboratory test of a 2012 Nissan Leaf over the UDDS City cycle found effi-
ciency values of of 118% at 72 ∘F and ~60% for a 20 ∘F [15]. Unfortunately, our
method needs a cycle-averaged value of powertrain efficiency, so these values cannot
be directly used in our model without some way to adjust them to different drive
cycles.

Another question to address with our definition powertrain efficiency is how it
varies with changes in drive cycle. While our definition of powertrain efficiency is a
cycle-averaged value and should yield accurate estimates of battery energy in aggre-
gate, the size of the variation should be investigated. A few studies have addressed
this issue, but only for hybrid electric vehicles [111, 11]. Unfortunately, there were
no previous studies of powertrain efficiency for electric-only powertrains, and it is
inappropriate to extrapolate from hybrid powertrains to electric-only ones, leaving
no data to compare these results with. An alternative method would be to adopt
the method proposed by Ott et. al, which uses a formulation of powertrain efficiency
that separates propulsion and regenerative braking efficiencies, which are claimed to
be more consistent across drive cycles [72].

4.2.4 Validation of battery energy comparisons

The method presented above uses one value to represent usable energy of a battery.
The usable energy remains relatively constant in the range of battery discharge power

10http://www.teslamotors.com/goelectric/efficiency
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experienced in driving, so not much accuracy is lost by using only one value to refer
to usable energy under different conditions. This section further defines the quantity
that is measured, and supports the definition with reasoning and evidence.

In this research, any comparison of battery energy across different discharge
scenarios must be made carefully to ensure that the comparison is meaningful. Since
the usable energy extracted from a battery varies with how it is used, it is hard
to compare. For example, a high-power trip that has a calculated required battery
energy of 10 kWh actually has slightly higher energy requirement than a 10 kWh
low-power trip. Namely, that a battery that can provide 10 kWh at low-power may
not be able to do so at high power. This power dependency of energy is of concern
when tail fractions are calculated, because then the quantities being compared refer
to different scenarios.

The comparison is relevant in calculating a tail fraction, which is the fraction of
trips whose energy requirement is too high for the battery to meet. Not accounting
for the power dependency of energy might cause misclassification of trips and cause
error in the estimated tail fraction. For example, imagine a battery with a capacity
of 10 kWh when measured in a medium-power setting. Misclassification error may
occur if this capacity is compared to trip energy requirements without addressing
the change in usable energy under different discharge power – a high-power trip that
used 9.5 kWh might belong in the tail fraction, whereas low-power trip that used
10.5 kWh might not.

The method for this validation test is the following. For each GPS trip, tractive
power is calculated at each moment in time, which is then converted to battery power
by dividing by powertrain efficiency. Power is divided by the Nissan Leaf’s battery
mass to find specific power of the battery system. For each GPS trip, the 85th, 90th,
95th, 99th, and 100th percentiles of the trip’s list of positive values of specific power
are calculated. Then, the distribution of each of these percentiles can be plotted as
a histogram and a cumulative density function, shown in Figure 4-4. For example,
the bolded line represents the distribution of the 99th percentile of specific power of
each trip, across all GPS trips.

Moving forward, technology performance will be compared to the specific power
requirements of trips. To do this, a benchmark is selected to represent specific power
demand of trips: the 99th percentile of the distribution of 99th percentiles of all trips,
the value of which is shown as the vertical black line in the lower panel of Figure
4-4. A battery that can meet this level of performance would be able to reasonably
drive over 99% of all trips, having insufficient power for only 1% of the time in these
trips.

With this benchmark to represent the maximum battery power required for real-
world driving, the performance of technology is compared using the Ragone plot
in Figure 4-5. The benchmark appears again as a vertical line. The Ragone plot
shows the performance of typical battery chemistries, using system-level metrics.
The data for the Ragone plot was taken from [85]. As in the ARPA-E targets [7],
battery systems are assumed to have twice the mass of battery cells, so the data is
multiplied by 0.5 to convert from cell-level to system-level metrics. The USABC and
ARPA-E targets for usable specific energy are plotted here as well.

Figure 4-5 shows that the power requirement of real-world driving is below the
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Figure 4-4: Histogram (upper) and cumulative distribution function of battery spe-
cific power requirements for real-world GPS drive cycles. A single curve represents
the Nth percentile of instantaneous specific power of a trip, across all GPS trips.
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Figure 4-5: Ragone plot of battery performance, using system-level metrics. The
vertical black line is a benchmark that represents the maximum battery power re-
quired for real-world driving. The red line corresponds to the C/3 discharge rate for
the 2011 Nissan Leaf battery, calculated based on the Leaf’s nominal battery energy.

“shoulder” of the Ragone curve. Thus, the power requirements of real-world driving
stays in the regime where energy does not vary drastically with power, for Li-ion
batteries. The Ragone plot also shows the size of the expected variation. At very low
power of 10 W/kg, the maximum usable specific energy of Li-ion is 90 Wh/kg. At the
maximum power requirement for real-world driving, the usable specific energy is 60
W/kg. In the medium power range of the C/3 discharge rate specified in the USABC
and ARPA-E targets, the usable specific energy is 80 Wh/kg. This represents an
upper bound on the difference in energy measured in different conditions, because
real-world drive cycles experience a variety of power discharge rates, and so would
tend to converge towards the mean. Therefore, the difference is small enough for
this effect to be ignored when different values of energy are compared.

4.3 Combining datasets across scales

This section explains how the model is applied to estimate battery energy require-
ments for NHTS trips. This involves two steps: correcting for rounding error and
performing a conditional bootstrap procedure to merge the two datasets. The fol-
lowing Figure 4-6 provides an overview of this process.
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Figure 4-6: Overview of the procedure for combining datasets, which takes NHTS
trips as input, and outputs a set of possible tractive energy for each input trip.
First, a raw NHTS trip distance and duration are de-rounded into several values
(blue boxes). Next, the conditional bootstrap occurs (red boxes), which for a given
pair of D and T, finds a set of GPS trips with similar D and T, and returns the
corresponding tractive energy for each D and T.
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Figure 4-7: Distributions of raw values of NHTS vehicle trip distance, duration, and
average velocity. The peaks are evidence of the tendency of survey subjects to round
their responses to the nearest multiple of 5 or 15.

4.3.1 Correcting for rounding error in NHTS data

A first step in preparing the raw NHTS data for analysis is to correct for rounding
error in the distance and duration records through a process called “de-rounding”.
The NHTS data is self-reported by the survey subjects, who seem to have a tendency
to round their responses to the nearest 5 or 15 for convenience when reporting trip
distances or durations. This is evidenced by unnatural peaks in the distribution of
distance and duration values, as shown in Figure 4-7. While such rounding error
in the data would not affect certain statistical measures such as the mean, analyses
based on the distribution of the data can be biased [28]. The goal is to redistribute the
data in the peaks to nearby values in a way that creates a more realistic distribution,
without introducing bias to the data.

The approach used is to convert the raw NHTS values to “true” values, which
will try to mimic the distribution of distance and duration prior to rounding. Each
raw data point will be mapped to a handful of possible “origin” points, representing
the potential true values that, when rounded, could yield the observed value. This is
the first step shown in Figure 4-6. The following section explains the mathematical
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details of this process, in which a model of rounding is first developed, and then
statistics is applied to select possible origin values. This section is based on the
de-rounding method developed for an upcoming paper [61].

Let 𝑥 denote the true value of some quantity, and �̃� the corresponding rounded
value that is observed. The set of observed data provides the probability mass
function of �̃�, 𝑃 (�̃�). The goal is to estimate the probability density of 𝑥, 𝑝(𝑥), which
can be computed from 𝑃 (�̃�) with

𝑝(𝑥) =
∑︁
�̃�

𝑝(𝑥|�̃�)𝑃 (�̃�), (4.2)

where 𝑝(𝑥|�̃�) is the conditional probability that the true value was 𝑥, given that
the value observed was �̃�. This conditional probability 𝑝(𝑥|�̃�) needs to be computed.

First, a probabilistic model of the rounding process is devised as follows. For
a given true value 𝑥, it is rounded to the nearest multiple of 1 (i.e. integer) with
probability 𝑃1, the nearest multiple of 5 with probability 𝑃5, and nearest multiple of
15 with probability 𝑃15. Since one of the rounding options must occur, 𝑃1+𝑃5+𝑃15 =
1. These probabilities will be referred to the “rounding probabilities”. Multiples of
1, 5, and 15 are chosen as the rounding rules because they best describe the NHTS
data: 1 is chosen because the data values are integers, and 5 and 15 are chosen
because they are the locations of the unusually large peaks. For conciseness, let
𝑅𝑘(𝑥) mean “𝑥 rounded to the nearest the nearest multiple of 𝑘”; e.g. 𝑅5(23) = 25
and 𝑅15(23) = 30. Then the probability of rounding from 𝑥 to �̃� is

𝑃 (�̃�|𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑃1 �̃� = 𝑅1(𝑥)

𝑃5 �̃� = 𝑅1(𝑥)

𝑃15 �̃� = 𝑅15(𝑥)

0 otherwise

.

The reverse probability 𝑝(𝑥|�̃�) is needed to find 𝑝(𝑥) in Equation 4.2. To express
this term, the three cases of rounding in the observed data will be considered sep-
arately: (1) �̃� is a multiple of 1 only, (2) �̃� is a multiple of 1 and 5, and (3) �̃� is a
multiple of 1, 5, and 15.

If the observed value �̃� is only a multiple of 1, then the original value 𝑥 must
have been “1-rounded”, i.e. rounded to the nearest multiple of 1. Therefore, 𝑥 must
have originated in the interval

[︀
�̃�− 1

2 , �̃� + 1
2

]︀
. For simplicity, 𝑥 is assumed to be

uniformly distributed in this interval, so the reverse probability is

𝑝(𝑥|�̃�) =

{︃
1 𝑥 ∈

[︀
�̃�− 1

2 , �̃� + 1
2

]︀
0 otherwise

.

If �̃� is a multiple of 1 and 5, then the original value 𝑥 must have been either
“1-rounded” or “5-rounded”, and 𝑥 could be anywhere in

[︀
�̃�− 5

2 , �̃� + 5
2

]︀
. If 𝑥 is again

assumed to be uniformly distributed in this interval, then 𝑝(𝑥|�̃�) will resemble a

45



x

p(x|x̃)

x̃ � 1
2 x̃ + 1

2 x̃ + 5
2x̃ � 5

2

Figure 4-8: “Staircase” shaped conditional distribution of 𝑝(𝑥|�̃�) when �̃� is a multiple
of 5.

staircase shape, as shown in Figure 4-8. This staircase shape exists because the
probability of 𝑥 being in the outer intervals of

[︀
�̃�− 5

2 , �̃�− 1
2

]︀
and

[︀
�̃� + 1

2 , �̃� + 5
2

]︀
is

proportional to 𝑃5, because it must have been 5-rounded, whereas the probability of
𝑥 being in the inner interval of

[︀
�̃�− 1

2 , �̃� + 1
2

]︀
is proportional to 𝑃1 + 𝑃5, because it

could have been either 1-rounded or 5-rounded. Normalizing this distribution yields:

𝑝(𝑥|�̃�) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑃5/𝐴 𝑥 ∈

[︀
�̃�− 5

2 , �̃�− 1
2

]︀
(𝑃1 + 𝑃5)/𝐴 𝑥 ∈

[︀
�̃�− 1

2 , �̃� + 1
2

]︀
𝑃5/𝐴 𝑥 ∈

[︀
�̃� + 1

2 , �̃� + 5
2

]︀
0 otherwise

where

𝐴 = 𝑃1 + 5𝑃5.

If �̃� is a multiple of 1, 5, and 15, the distribution is a 3-level staircase, with 5
regions accounting for the 3 different ways of rounding to �̃�, following the same logic
as above. The result is:

𝑝(𝑥|�̃�) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑃15/𝐵 𝑥 ∈
[︀
�̃�− 15

2 , �̃�− 5
2

]︀
(𝑃5 + 𝑃15)/𝐵 𝑥 ∈

[︀
�̃�− 5

2 , �̃�− 1
2

]︀
(𝑃1 + 𝑃5 + 𝑃15)/𝐵 𝑥 ∈

[︀
�̃�− 1

2 , �̃� + 1
2

]︀
(𝑃5 + 𝑃15)/𝐵 𝑥 ∈

[︀
�̃� + 1

2 , �̃� + 5
2

]︀
𝑃15/𝐵 𝑥 ∈

[︀
�̃� + 5

2 , �̃� + 15
2

]︀
0 otherwise

where
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𝐵 = 𝑃1 + 5𝑃5 + 15𝑃15.

Now, a method is needed to estimate the values for 𝑃1, 𝑃5, and 𝑃15 based on
the data. First, the expected size of the peaks in the rounded data, based on the
rounding model, is considered. Given the true distribution 𝑝(𝑥), the model predicts
that the observed distribution 𝑃 (�̃�) will be

𝑃 (�̃�) = 𝑃1

∫︁ �̃�+ 1
2

�̃�− 1
2

𝑝(𝑥) 𝑑𝑥

when �̃� is a multiple of only 1, and

𝑃 (�̃�) = 𝑃1

∫︁ �̃�+ 1
2

�̃�− 1
2

𝑝(𝑥) 𝑑𝑥 + 𝑃5

∫︁ �̃�+ 5
2

�̃�− 5
2

𝑝(𝑥) 𝑑𝑥

when �̃� is a multiple of only 1 and 5, and

𝑃 (�̃�) = 𝑃1

∫︁ �̃�+ 1
2

�̃�− 1
2

𝑝(𝑥) 𝑑𝑥 + 𝑃5

∫︁ �̃�+ 5
2

�̃�− 5
2

𝑝(𝑥) 𝑑𝑥 + 𝑃15

∫︁ �̃�+ 15
2

�̃�− 15
2

𝑝(𝑥) 𝑑𝑥

when �̃� is a multiple of 1, 5, and 15. To simply these integrals, 𝑝(𝑥) is approxi-
mated as uniformly distributed near �̃�, yielding the following equations:

𝑃 (�̃�) = 𝑃1

𝑃 (�̃�) = 𝑃1 + 5𝑃5

𝑃 (�̃�) = 𝑃1 + 5𝑃5 + 15𝑃15. (4.3)

Now, consider three consecutive bins in the observed distribution, �̃�−1, �̃�, and �̃�+
1, where the middle bin is a multiple of only 1 and 5. The data enables measurement
of the ratio

𝜌5 ≡
𝑃 (�̃�)[︀

𝑃 (�̃�− 1) + 𝑃 (�̃� + 1)
]︀
/2

, �̃� is multiple of 1 and 5,

which describes how much higher the peak bin is than the average level of its
two neighbors. Using Equation 4.3, the ratio is approximately

𝜌5 ≈ 1 + 5
𝑃5

𝑃1
.

A similar ratio can be defined for bins that are multiples of 1, 5, and 15:
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𝜌15 ≡
𝑃 (�̃�)[︀

𝑃 (�̃�− 1) + 𝑃 (�̃� + 1)
]︀
/2

, �̃� is multiple of 1, 5, and 15

which the model predicts to be approximately

𝜌15 ≈ 1 + 5
𝑃5

𝑃1
+ 15

𝑃15

𝑃1

= 𝜌5 + 15
𝑃15

𝑃1
.

By calculating these two ratios, combined with the constraint that 𝑃1+𝑃5+𝑃15 =
1, a solution for the three rounding probabilities can be found. Some algebra yields
these results:

𝑃1 =
1

1 + 1
5(𝜌5 − 1) + 1

15(𝜌15 − 𝜌5)
(4.4)

𝑃5 =
1

5
(𝜌5 − 1)𝑃1

𝑃15 =
1

15
(𝜌15 − 𝜌5)𝑃1.

In the above derivation, only the two neighboring bins are used to calculate the
ratios in order to minimize the bias caused by deviations from non-uniformity in 𝑝(𝑥).
Since the bins are close together, the true distribution is expected to be similar for
each bin, and therefore the observed difference between the bins would come from
the tendency of true values to be rounded into the middle peak bin. Differences
between the peak bin and bins further away are caused by both rounding and true
differences in 𝑝(𝑥). An alternative option would be to compute ratios from additional
bins, such as the 4 nearest bins, rather than just the nearest 2. This would increase
the bias from deviations from the assumption of uniform 𝑝(𝑥) near �̃�, but it would
also decrease the method’s sensitivity to noise in the data.

In practice, the ratios 𝜌5 and 𝜌15 used in Equation 4.4 are computed from an
aggregation of all the peaks in the data, rather than from any single peak. For
example, 𝜌5 is computed from sums of the bins adjacent to any multiple of 5, i.e.
the sum of any bin corresponding to �̃�−1, �̃�, or �̃�+1. The ratio is then computed from
these three aggregated bins. The same procedure is applied to peaks at multiples of
15. The following equations summarizes this procedure:
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𝑃𝑎𝑔𝑔,5(�̃�− 1) =
∑︁

�̃� is multiple of 5

𝑃 (�̃�− 1)

𝑃𝑎𝑔𝑔,5(�̃�) =
∑︁

�̃� is multiple of 5

𝑃 (�̃�)

𝑃𝑎𝑔𝑔,5(�̃� + 1) =
∑︁

�̃� is multiple of 5

𝑃 (�̃� + 1)

𝜌5 ≡
𝑃𝑎𝑔𝑔,5(�̃�)[︀

𝑃𝑎𝑔𝑔,5(�̃�− 1) + 𝑃𝑎𝑔𝑔,5(�̃� + 1)
]︀
/2

,

𝑃𝑎𝑔𝑔,15(�̃�− 1) =
∑︁

�̃� is multiple of 15

𝑃 (�̃�− 1)

𝑃𝑎𝑔𝑔,15(�̃�) =
∑︁

�̃� is multiple of 15

𝑃 (�̃�)

𝑃𝑎𝑔𝑔,15(�̃� + 1) =
∑︁

�̃� is multiple of 15

𝑃 (�̃� + 1)

𝜌15 ≡
𝑃𝑎𝑔𝑔,15(�̃�)[︀

𝑃𝑎𝑔𝑔,15(�̃�− 1) + 𝑃𝑎𝑔𝑔,15(�̃� + 1)
]︀
/2

,

Each observed value is assigned a handful of true values by randomly sampling
from the reverse distribution function determined by 𝑃1, 𝑃5, and 𝑃15. In the practical
implementation of this method, 4 true values are assigned for each observed value.
Multiple values for each observed value are assigned to reduce the bias introduced by
the random generation process. The survey weights in the NHTS data are adjusted
to account for the replication of data points.

More sophisticated de-rounding methods could be devised, though for simplicity
the above procedure is used. For example, the rounding model could be made more
elaborate by including more ways to round (e.g. a 𝑃10), or by using a different kernel
to represent the “likelihood to round” rather than uniform. A possible improvement
to solving for 𝑝(𝑥) would be to make it iterative. The estimated 𝑝(𝑥) distribution
from the first iteration could be used in place of the uniformity assumption in the
second iteration, and so forth.

4.3.2 Conditional bootstrap procedure

This section explains the method used to assign tractive energy requirements to
NHTS trips based on the GPS data. This method is based on the one used by
McNerney et al. in an upcoming paper [61], which in turn is based on the method
from [23].

The goal is to estimate the distribution of tractive energy requirements from the
NHTS data, but these trips only have records of distance and duration, which are not
enough to estimate tractive energy as accurately as this research requires. The GPS
data has drive cycle data which does allow accurate estimation of tractive energy,
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but doesn’t have the broad regional and segmental scope of the NHTS. To address
these data issues, a conditional bootstrap procedure is used to compute the energy
distribution associated with the NHTS data by inputting energies from the GPS
data, thereby combining broad regional scope with accurate estimation of energy.

The overall structure of this procedure is to, for every observed trip in the NHTS,
identify a set of “similar” GPS trips, based on distance and duration, and then assign
the tractive energy requirements from the set of similar GPS trips to the original
NHTS trip. This bootstrap procedure is the second step of Figure 4-6, highlighted
in red. This section presents the mathematical details of this conditional bootstrap
procedure.

The first step is to re-write the expression for energy into another form that can
help bridge the two datasets. The following identity is used:

𝐸 =
(︀𝐸
𝐷

)︀
𝐷.

The energy intensity of a trip is denoted by 𝐹 . The letter 𝐹 (not to be confused with
force) is used because energy intensity is related to fuel consumption. Note that this
is the same quantity as the energy-per-mile 𝐸𝑃𝑀 quantity used in the powertrain
derivation, but 𝐹 is used here for brevity. Energy intensity of a trip is defined as the
tractive energy requirement of a trip, divided by its distance:

𝐹 ≡ 𝐸/𝐷

which gives us

𝐸 = 𝐹𝐷.

This expression is useful because it separates the quantities known in the NHTS
data, namely distance 𝐷, from those quantities that require knowledge of the drive
cycle to be calculated effectively, namely energy intensity 𝐹 . The approach that will
be used is to compute 𝐹 for each GPS trip, and use that information to augment
the NHTS data using the conditional bootstrap procedure.

Next, the law of total probability allows the probability density of 𝑝(𝐸) of trip
tractive energies 𝐸 to be written as

𝑝(𝐸) =

∫︁∫︁∫︁
𝑝
(︀
𝐸
⃒⃒
𝐷,𝑇, 𝐹

)︀
𝑝
(︀
𝐷,𝑇, 𝐹

)︀
𝑑𝐷 𝑑𝑇 𝑑𝐹. (4.5)

This equation states that the probability of a random NHTS trip having energy
𝐸 is equal to the probability of a trip having a particular combination of (𝐷,𝑇, 𝐹 )
times the probability that this combination yields energy 𝐸, summed over all possible
combinations of (𝐷,𝑇, 𝐹 ).

Equation 4.5 can be worked into a more convenient form that will motivate the
conditional bootstrap procedure. Since 𝐷 and 𝐹 alone are sufficient to specify the
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energy 𝐸, the conditional probability 𝑝(𝐸|𝐷,𝑇, 𝐹 ) is a delta function:

𝑝
(︀
𝐸
⃒⃒
𝐷,𝑇, 𝐹

)︀
= 𝛿

(︁
𝐸 − 𝐸(𝐷,𝑇, 𝐹 )

)︁
= 𝛿(𝐸 − 𝐹𝐷). (4.6)

Using the definition of conditional probability, 𝑝(𝐷,𝑇, 𝐹 ) can be split into two
parts:

𝑝
(︀
𝐷,𝑇, 𝐹

)︀
= 𝑝

(︀
𝐹
⃒⃒
𝐷,𝑇

)︀
𝑝
(︀
𝐷,𝑇

)︀
. (4.7)

Equation 4.7 shows that the probability of observing a (𝐷,𝑇, 𝐹 ) triplet is equal
to the probability of observing a (𝐷,𝑇 ) pair times the probability of observing 𝐹
given the observed (𝐷,𝑇 ) pair. This decomposition is useful because 𝑝(𝐷,𝑇 ) is
known from the NHTS dataset, because there is a probability mass 1/𝑁 associated
with each of the 𝑁 observations (𝐷𝑖, 𝑇𝑖). Therefore,

𝑝
(︀
𝐷,𝑇

)︀
=

𝑁∑︁
𝑖=1

1

𝑁
𝛿(𝐷 −𝐷𝑖)𝛿(𝑇 − 𝑇𝑖). (4.8)

Plugging in Equation 4.6, Equation 4.7, and Equation 4.8 into Equation 4.5 yields

𝑝(𝐸) =
1

𝑁

𝑁∑︁
𝑖=1

∫︁
𝛿
(︁
𝐸 − 𝐹𝐷𝑖

)︁
𝑝
(︀
𝐹
⃒⃒
𝐷𝑖, 𝑇𝑖

)︀
𝑑𝐹. (4.9)

This is a sum over all 𝑁 (𝐷𝑖, 𝑇𝑖) pairs in the NHTS data. For each term of the
sum, there is an integral of the probability that a trip with the observed (𝐷𝑖, 𝑇𝑖) has
a value of 𝐹 such that 𝐸 = 𝐹𝐷𝑖. Note that for a specified value of 𝐷𝑖, there is only
one value of 𝐹 that yields energy 𝐸.

Trip duration 𝑇 is included in the above derivation because 𝑇 provides additional
information in estimating the conditional probability 𝑝(𝐹 |𝐷,𝑇 ), thus improving the
accuracy of the estimation. An alternative would be to use 𝑝(𝐹 |𝐷), since energy can
be determined by only 𝐷 and 𝐹 . This has the advantage of lower dimensionality,
which leads to a higher density of points to sample from in the conditional bootstrap
at the cost of higher bias due to ignoring the dependence of 𝐹 on 𝑇 .

Equation 4.9 can be read as a prescription for the following conditional bootstrap
procedure: for each trip in the NHTS, grab its distance and duration as the pair
(𝐷𝑖, 𝑇𝑖); generate plausible values for energy intensity 𝐹 given (𝐷𝑖, 𝑇𝑖); compute the
resulting energy 𝐸 = 𝐹𝐷𝑖; and add it to a list. Repeat this many times for each
trip, then repeat for all trips, and then compute the distribution of the whole list.
This procedure will create a distribution of 𝐹 that resembles the true distribution
of 𝑝(𝐹 |𝐷𝑖, 𝑇𝑖), if plausible 𝐹 are generated properly.

The method for generating plausible 𝐹 is based on the approach in [23]. The
estimated conditional density 𝑝ℎ(𝐹 |𝐷𝑖, 𝑇𝑖) is written as
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𝑝ℎ
(︀
𝐹
⃒⃒
𝐷,𝑇

)︀
=

𝐺∑︁
𝑔=1

⎡⎣ 𝐾
(︁
Δ−Δ(𝑔)

ℎ

)︁
∑︀𝐺

𝑟=1𝐾
(︁
Δ−Δ(𝑟)

ℎ

)︁ ·
𝐾

(︁
Θ−Θ(𝑔)

ℎ

)︁
∑︀𝐺

𝑠=1𝐾
(︁
Θ−Θ(𝑠)

ℎ

)︁
⎤⎦ 𝛿(𝐹 − 𝐹 (𝑔)), (4.10)

where K is a kernel function, ℎ is the bandwidth, ∆ ≡ log10𝐷, and Θ ≡ log10 𝑇 .
The sums run over all 𝐺 trips in the GPS dataset. 𝐷 and 𝑇 are distances and
durations passed in from the NHTS dataset, while 𝐷(𝑔) and 𝑇 (𝑔) are distances and
durations from trip 𝑔 from the GPS dataset. 𝐾(𝑥) is a kernel function that controls
the likelihood of selecting of a particular (𝐷(𝑔), 𝑇 (𝑔)) based on its distance to (𝐷,𝑇 );
if a given (𝐷(𝑔), 𝑇 (𝑔)) is close to (𝐷,𝑇 ), it will have a high probability of selection.
The bandwidth ℎ tunes the necessary distance between the pairs. Distance between
points is defined logarithmically because trip distances and durations are spread out
over several orders of magnitude.

For simplicity, the uniform kernel is used: 𝐾(𝑥) = 1 if 𝑥 ∈ [−1, 1] and 𝐾(𝑥) = 0
otherwise. This choice of kernel stipulates that all 𝐹 (𝑔) whose corresponding ∆(𝑔)

and Θ(𝑔) are each within distance ℎ to ∆ and Θ, respectively, are equally likely
to be selected. This choice of kernel lends itself nicely to a bootstrap simulation by
simplifying the sampling procedure: rather than taking the sum in the denominators
over all GPS trips, a handful of trips is randomly selected from the rectangular
sampling space defined by the kernel and bandwidth.

In practice, the sparsity of data at higher values of𝐷 and 𝑇 means that sometimes
there may not be any GPS trips in the default sampling window. To solve this, the
sampling window is gradually expanded by increasing ℎ until it bounds a satisfactory
amount of trips, from an initial value of ℎ = 0.125.

In summary, the steps of the algorithm are listed below:

1. Take a trip 𝑖 from the NHTS data and get its distance 𝐷𝑖 and duration 𝑇𝑖.

2. Find the set 𝑆𝑖 of “similar” GPS trips, whose distances and durations are each
within log-distance ℎ of (𝐷𝑖, 𝑇𝑖).

3. In each bootstrap world 𝑏, select a GPS trip 𝑔 uniformly from 𝑆𝑖, and assign
the bootstrapped energy intensity 𝐹 (𝑖𝑏) = 𝐹 (𝑔).

4. Calculate the bootstrapped tractive energy requirement 𝐸𝑖𝑏 = 𝐹 (𝑖𝑏)𝐷𝑖, and
record it to a list.

5. Repeat steps 1-4 many times, to generate many bootstrap worlds to obtain a
large selection of possible 𝐹 (𝑖𝑏) that could have occurred with the NHTS trip
𝑖.

6. Repeat steps 1-5 for each trip 𝑖 in the NHTS data.

7. Compute the empirical density of the list {𝐸𝑖𝑏}.

In the implementation of this method, 4 possible values are chosen for 𝐹 (𝑖𝑏) for each
NHTS trip 𝑖 in step 4.

52



There are alternative methods for selecting 𝐹 based on (𝐷,𝑇 ) other than this
conditional bootstrap. Other studies have used a single constant value for 𝐹 , which
were mentioned in Section 2.4. 𝐹 could also be calculated from a regression on
both 𝐷 and 𝑇 . However, a conditional bootstrap procedure is preferred because it
preserves the natural variation in 𝐹 observed in the GPS data, which creates a more
representative distribution of tractive energy.

4.3.3 Validation of conditional bootstrap procedure

This section validates the conditional bootstrap density estimation procedure by
assessing the accuracy of its predictions of trip energy on the GPS dataset. For each
trip, the bootstrapped energy is compared with the “true” energy, which is calculated
directly from the drive cycle. If the method works, the bootstrap output should, on
average, match up with the true energy values. While accuracy for individual trips
would be ideal, it is more important to see whether the using the bootstrap method
introduces bias in the main metric of interest in this analysis: tail fraction (fraction
of energy above a certain threshold).

The details of the validation are as follows. First, the GPS dataset is split into a
1000-trip test set and a 64,632-trip reference set. The test set is modified to mimic
NHTS data by simulating the rounding of the trip distances and durations. The test
set is then fed through the model: first, the distances and durations are de-rounded
into 4 distance-duration pairs. Next, each of the de-rounded distance-duration pairs
are matched with 4 similar trips from the reference set, thus assigning 16 total
possible energy values to each of the 1000 trips in the test set. This constitutes one
run of the bootstrap simulation. A total of 100 bootstrap simulations are run with
different partitions of the GPS data, in order to study the difference in error metrics
with respect to different partitions of the GPS data.

In the analysis below, “per-trip error” is defined as the difference between the
mean of the 16 bootstrapped energies and the true energy value, which is calculated
from the drive cycle of the trip. Information for properly aggregating vehicle-trips
into vehicle-days was not readily available in the GPS dataset, so vehicle-days were
simulated by first choosing the number of trips per day by sampling from a Poisson
distribution with mean 3.5, then assigning the 1000 test trips randomly to vehicle-
days. Energies for vehicle-days were calculated by summing up the means of the
energies of the constituent trips. The threshold used for calculation of tail fractions
is the 16.8 kWh usable energy of the Leaf battery, which is assumed to be 70% of its
24 kWh nominal energy capacity11.

Figure 4-9 shows both absolute prediction error (panel 1) and relative prediction
error (panel 2) for each trip in the test set, for one bootstrap simulation. Predic-
tion error is the difference between the predicted energy and the true value. The
mean error is slightly negative. The scatterplot shows that the variance in predic-
tion error scales up with higher predicted trip energies, as expected. In the second
panel, a linear fit of the errors indicates that energies of high-energy trips might be
overestimated while low-energy trips are underestimated.

Figure 4-9 shows the results for one bootstrap run, but it is important to see

11See Subsection 5.3.3 for a detailed explanation of “usable energy” used in this way.
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Figure 4-9: Accuracy of vehicle-trip energies estimated with the conditional boot-
strap procedure. Absolute per-trip prediction error (top) and relative per-trip pre-
diction error are plotted against predicted energy, for a single bootstrap simulation.
A linear fit (in red) is shown for percent error, which indicates overestimation of
energy for high-energy trips.
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Figure 4-10: Histogram of mean per-trip relative prediction error in trip energies.

whether these trends persist over repeated runs of the bootstrap procedure, i.e.
with different mappings of survey trips to GPS trips and with different partitions
of the GPS data into test and reference sets. To see how the mean of the per-trip
relative error changes, this metric is compared across bootstrap trials. From the
list of mean per-trip relative error from each of the 100 bootstrap trials, a grand
mean and the standard error are calculated. The distribution of the means and the
summary statistics are shown in Figure 4-10. Treating the mean error from each
bootstrap trial as a random variable, a 90% confidence interval for the grand mean
is calculated by using the observed 5th and 95th percentiles as the boundaries of the
interval. This confidence interval contains 0, which means that the results do not
reject the null hypothesis that the true mean is 0. While the grand mean is slightly
negative, the test does not show it is statistically significantly different from 0.

Therefore, this analysis shows that the method is accurate enough in estimating
the energies of individual trips. While there may be some slight negative bias, it is
not statistically significant, and is much smaller than other potential sources of error
in the model.

In addition to the overall model behavior described by the grand mean of pre-
diction error, the error in predictions of tail fractions is also of interest, because
some of the results and conclusions in this thesis depend on the model’s estimates of
tail fraction. Errors in tail fraction estimates occur when trips are misclassified as
being counted in or out of the tail fraction, because the estimated energy and actual
energy of a trip are on different sides of the tail fraction threshold. For example, the
model’s estimate of energy for a trip could be above threshold, counting it as part
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Figure 4-11: Scatterplot of relative error in tail fraction versus predicted tail fraction.

of the tail fraction, while in reality its energy is below the threshold.
Figure 4-11 shows the relative error in the predicted tail fraction versus the

predicted tail fraction. First, it is noted that the tail fraction varies over a wide
range, from 0.005 to 0.025 for vehicle-trips and 0.06 to 014 for vehicle-days. The
size of the variation is impacted by the sample size of the test set, so increasing it
above 1000 trips may reduce this observed variation. However, a sample size of 1000
trips is used to simulate running the model on a small number of trips, on the order
of the number of NHTS trip records for a small US city. The results show that the
error in tail fraction has a negative mean, and that the linear fit indicates a smaller
amount of relative error for larger predicted tail fractions. To further understand
the origin of the negative bias, prediction error for trips near the tail fraction are
investigated to see whether the method tends to over- or under-estimate energy for
these trips. Finally, the graphs show that the absolute error for vehicle-days is about
5 times bigger than that of vehicle-trips, because vehicle-day tail fractions are about
10 times bigger than vehicle-trips, while the standard deviation in the relative error
for vehicle-trips is only twice that of vehicle-days.

Figure 4-12 focuses on the relative errors by discarding the X-axis from Figure
4-11 and presenting the relative errors in a histogram. The distribution of relative
error is wider for vehicle-trips than for vehicle-days, possibly because smaller absolute
values of tail fractions for vehicle-days leads to larger relative error for the same
absolute error.

While the means of both distributions are negative, the 90% confidence interval
in both cases include zero, meaning that the null hypothesis that the bias is 0 cannot
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Figure 4-12: Histogram of relative error in tail fraction estimates.

be rejected. However, the histograms show that the variation in relative error is large,
ranging up to 20% for vehicle-days. This provides an estimate for the standard error
for the tail fraction estimates presented later in the results chapter.
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Chapter 5

Results

This chapter presents the results of the research. In Section 5.1, the travel patterns
in the NHTS and GPS datasets are studied without applying the energy model.
Section 5.2 shows the results of the energy model and highlights some trends. In
Section 5.3, the energy requirements are compared to performance targets for battery
energy capacity.

5.1 Characterization of NHTS and GPS trips

Before analyzing the energy requirements of trips, a useful first step is to characterize
trip patterns in general, in terms of their distance and duration. This section focuses
on studying the raw datasets, before applying the energy model from Chapter 4.
First, the relevant units of analysis will be introduced. Next, trip duration, distance,
and average velocity will be analyzed for both datasets. Finally, the real-world drive
cycles are characterized and described.

5.1.1 Units of analysis

This study uses three units of analysis to classify travel: person-trips, vehicle-trips,
and vehicle-days. A person trip is a trip made by an individual person, while a
vehicle-trip is a trip made by an individual vehicle. For example, two people going
to the airport in the same vehicle counts as two person-trips, but a single vehicle-
trip. A vehicle-day is the set of all vehicle-trips occurring on one day for a particular
vehicle.

Vehicle-days are the most interesting units of analysis for this thesis, because the
energy requirement for a vehicle-day represents the scenario that an EV is driven for
a full day, without charging during the day and being charged overnight. This is a
better approximation of reality than vehicle-trips, since most PEVs are only charged
at home overnight.

Alternative choices for the unit of analysis would place the focus on different
aspects of travel. Using person-trips would put the focus on the needs of travelers,
but would lead to double-counting of energy requirements for vehicles. Using vehicle-
trips would emulate the unlikely scenario that PEVs are recharged after every trip.
This could be used as an upper bound for the impact of public charging stations
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Figure 5-1: Histogram of 𝐷, 𝑇 , and 𝑣 for GPS vehicle-trips, NHTS vehicle-trips,
and NHTS vehicle-days.

on reducing the performance requirement for batteries. In addition, more intelligent
combinations of trip chains could better represent real opportunities for charging.

Trips made in personally owned vehicles will be the focus of this thesis, because
the goal of this analysis study the potential usage of electric vehicles as personal
vehicles. The NHTS contains a variety of trip modes, such as walking, driving,
public transportation, etc., which are ignored for this analysis.

5.1.2 Distance, duration, and speed

The analysis begins by looking at the aggregate characteristics of trips - distance
(𝐷), duration (𝑇 ), and average speed (𝑣). Histograms of 𝐷, 𝑇 , and 𝑣 are shown
in Figure 5-1, for GPS vehicle-trips, NHTS vehicle-trips, and NHTS vehicle-days.
Note that the histograms are shown on a logarithmic scale, to better represent the
full range of these variables. They follow a roughly log-normal distribution, with
a small mean but a heavy tail. The large majority of trips occupy a small portion
of the entire range, because most of the trips in the dataset are quite short. The
90th, 95th, and 99th percentiles of vehicle-trip distance are 20, 30, and 65 miles,
respectively. As a benchmark for distance, the average commute by personal vehicle
in the US is 12.09 miles [83]. Finally, the fact that the NHTS and GPS distributions
are similar in both center and spread verifies that the GPS trips from California are
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Figure 5-2: Scatterplot of 𝑇 vs 𝐷 for GPS vehicle-trips, NHTS vehicle-trips, and
NHTS vehicle-days.

reasonably representative of nationwide driving patterns.

To better understand the relationship between distance and duration, scatter-
plots of the same three units of analysis as above, are shown in Figure 5-2, on axes
of 𝑇 vs 𝐷. The first feature to notice about these plots is the triangular shape.
There are no points below the lower edge of the triangle because of physical speed
limitations. The density of points also decreases at the left-hand edge of triangle,
because there are few trips at very low average speeds. Most trips are in a moderate
speed range. The second feature is the large density of points near the origin. Most
trips have short distance and short duration. This echoes the log-normal shape of
the histograms seen in Figure 5-1, with its low mean and heavy tail. Again, the sim-
ilarity between the GPS scatterplot and the others gives confidence in bootstrapping
on the GPS data.

One possible issue is the relative scarcity of GPS data points at long distances and
durations. Luckily, this is not a big issue, because the variation in per-mile energy
consumption is lower for longer trips, so a smaller number of points is sufficient to
represent the variation.

5.1.3 Characterization of drive cycles

The detail offered in the GPS dataset can also be used to characterize how drive
cycles change for different aggregate characteristics of trips. To do this, Figure 5-3
shows GPS drive cycles that represent trips from different regions of the 𝐷-𝑇 space.

This figure gives a physical sense of the types of trips one would expect to find
at different ranges. At long distances, trips consist mostly of highway driving, with
surface road driving at the start and end. Difference in average trip velocity is
mostly explained by different highway cruising speeds, fraction of time spent on
surface roads, or the amount of highway traffic. This physical understanding of the
types of trips that are represented will also help interpret the energy results from
the bootstrap procedure in the next section.
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Figure 5-3: Drive cycles of GPS trips with various distances and durations. The
displayed drive cycles are shown in a scatterplot of duration versus distance.

5.2 Energy requirements of vehicle travel

This section presents the results of the energy model. These are the results that use
the model developed in Chapter 4.

5.2.1 Travel energy requirements

This section introduces the main results of the model, which are the energy require-
ments of travel. The model output of interest is the amount of usable energy that a
battery must provide in order for an electric vehicle to traverse a trip of a given dis-
tance and duration. This is called the travel energy requirement of a vehicle-trip, or
battery energy (as distinct from tractive energy). The distribution of travel energy
requirements for GPS vehicle-trips, NHTS vehicle-trips, and NHTS vehicle-days are
shown as histograms in Figure 5-4. The NHTS survey weights have been taken into
account in generating the weighted histogram shown.

The first observation is that the GPS and NHTS distributions are similar, as
expected, because the distributions of distance and duration are similar as well. The
next observation is that vehicle-day energies are larger than vehicle-trip energies, as
expected, since vehicle-days are aggregations of vehicle-trips. On average, there are
about 4 vehicle-trips per vehicle-day.
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Figure 5-4: Histogram of travel energy requirements for GPS vehicle-trips, NHTS
vehicle-trips, and NHTS vehicle-days. The x-axis corresponds to usable battery
energy.
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Figure 5-5: Scatterplot of travel energy requirements (𝐸) versus 𝐷, for GPS vehicle-
trips, NHTS vehicle-trips, and NHTS vehicle-days.

5.2.2 Variability in energy-distance relationship

Next, Figure 5-5 shows a scatterplot of travel energy requirement 𝐸 versus distance
𝐷. In all three units of analysis, 𝐸 and 𝐷 are positively correlated, as expected from
the derivation of tractive energy in Section 4.1.

This graph to quantifies the variability in the relationship between energy and
distance. For example, the energy requirement for vehicle-trips that are 50 miles
long range from 11 to 20 kWh for GPS trips, or 10 to 24 kWh for NHTS trips.
Understanding this variation will be crucial for calculating accurate estimates of tail
fractions, since they are especially sensitive to changes in the distribution of travel
energy requirements.

While the relationship between 𝐸 and𝐷 is mostly linear, there is variation around
the linear relationship, which is due to differences across drive cycles. Variation in
energy consumption due to drive cycles has been identified in previous studies and is
expected [78]. While this could be treated as random noise and energy consumption
could be predicted from distance by fitting a regression to these results, better results
can be achieved with our method. A simple way could be to use a regression to
predict 𝐸 from 𝐷. With no intercept term, this is essentially the same as picking a
single value for fuel economy, which is not ideal.

The next topic of analysis is the ratio of travel energy requirements to distance,
also referred to as travel energy intensity (𝐸/𝐷). Figure 5-6 shows both a histogram
of travel energy intensity and a scatterplot of it versus distance. This figure only
shows GPS data, because the NHTS data is identical, having been bootstrapped
from the GPS data. There is a sharp peak around 0.3 kWh/mi, which agrees well
with Kintner-Meyer et al.’s energy intensity of 0.26 kWh/mi for electric compact
sedans [51].

There are two features to note in Figure 5-6. First, the average energy intensity
increases slightly with increasing trip distance. Properly incorporating the variation
in energy intensity with different types of trips is crucial to accurate estimation of
travel energy requirements, and this is something our method does naturally through
the conditional bootstrap procedure. Secondly, the variance in energy intensity de-
creases with increased distance. This effect means that the bootstrap procedure can
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Figure 5-6: Histogram of energy intensity (𝐸/𝐷), and scatterplot of energy intensity
versus 𝐷.

provide acceptable estimates of required travel energy for long-distance trips, despite
sampling from a fewer number of long-distance GPS trips.

5.3 Battery benchmarks and travel energy requirements

This section compares the distribution of travel energy requirements from the pre-
vious section to benchmarks for the energy capacity of batteries. Before performing
the comparison, a useful metric for comparison is defined, as well as the concept of
usable energy in a battery.

5.3.1 Definition of tail fractions of travel energy requirements

The metric that will be used to compare benchmarks of battery energy capacity
against the distribution of energy requirements is the “tail fraction”, which is defined
as the fraction of trips above a given amount of energy. The tail fraction for a given
battery energy capacity represents the fraction of trips that would not be possible
with the given battery energy capacity. In the context of the model and results,
the tail fraction represents the portion of trips with energy requirements that are
too high to be met by the 2011 Nissan Leaf. Tail fractions can also be applied to
other trip characteristics, such as distance and energy. These tail fractions represent
the proportion of distance or energy associated with the trips in the tail fraction,
which are not satisfied by the given battery. For clarity, the original definition will
be referred to as “travel tail fraction”.

Figure 5-7 shows the value of three types of tail fractions at various energy
benchmark values, for each unit of analysis. Note that the line plot of the tail fraction
is equal to 1 minus the cumulative distribution function (CDF) of the distribution
of travel energy requirements, i.e. 𝑇𝐹 (𝐸) = 1 − 𝐶𝐷𝐹 (𝐸).

5.3.2 Definition of usable battery energy

The benchmarks for battery energy capacity are in terms of usable energy, rather
than nominal battery capacity. For example, the Nissan Leaf battery’s nominal
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Figure 5-7: Tail fractions of travel, distance, and energy, for GPS vehicle-trips,
NHTS vehicle-trips, and NHTS vehicle-days. Tail fractions of distance and energy
represent the amount of distance or energy associated with the trips in the travel
tail fraction.
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capacity is 24 kWh, but its usable energy is estimated be to only 70% of that amount
- 16.8 kWh.

The usable amount of energy in a battery is less than the nameplate or nominal
energy that is often reported by the automaker or battery maker [79]. The “usable
energy” of a battery is defined as the amount of energy that can be extracted at high
enough power to be useful for the battery’s purpose (i.e. enough power to move the
car). Not all energy stored in the battery can be utilized by the vehicle, because at
extreme SOC levels, the battery cannot meet the requirements of vehicle operation:
at low SOC, batteries have insufficient discharge power; at high SOC, batteries have
insufficient regenerative power [5, 59]. This results in a usable SOC window for the
battery that is less than 100%. Usable SOC windows vary by vehicles and designs,
and can range from 50% for lithium-ion [59] to 70% for PHEVs [75].

The calculated energy requirements for travel should be compared to the usable
energy capacity of batteries, not the nameplate value. A usable SOC window of 70%
is assumed for the Nissan Leaf, meaning that the energy benchmark that will be
compared to is 70% of the Leaf’s battery’s nominal capacity. The value of 70% was
chosen because the same value was used by Pesaran et al. [75]1. This is a moderate
estimate, because a calculation of usable energy based on EPA data, shown in Table
5-1, yields a lower SOC window of 65%, while some anecdotal evidence2 claim usable
SOC windows as high as 87.5%.

It is important to note that the usable SOC window is a different concept from
partially charging the battery. Some car makers recommend charging the battery
only partially, to avoid negative impacts on battery longevity from to deep recharge-
discharge cycles. For example, the Nissan Leaf has a built-in “Long Life” charging
mode that charges the battery to only 80% full in order to improve its longevity3.
However, even if the battery is charged to “100% full”, it is impossible to use the full
nominal capacity of the battery, for the reasons stated above.

5.3.3 Comparison of battery benchmarks to travel energy require-

ments

To give context for the distribution of travel energy requirements, it is compared to
several benchmarks for energy capacity of vehicle batteries. There are four bench-
marks of interest: the current 2011 Nissan Leaf battery, ARPA-E’s specific energy
target, and USABC’s targets for specific energy and total usable energy [90]. The
values of these benchmarks, with accompanying tail fractions, are shown in Table
5-2. Figure 5-8 illustrates the comparison between these benchmarks and the dis-
tribution of travel energy requirements with a histogram. Figure 5-8 shows that
the battery energy capacities specified by the targets fall in the upper tail of the
distribution. The tail fractions reported in Table 5-2 give a more precise estimate of
the fraction of trips that lie above the targets. While the energy targets are given

1Although Pesaran et al. analyzed PHEVs, batteries for both BEVs and PHEVs must provide
for all-electric driving, and thus one would expect their designs to be similar enough to assume the
same SOC window.

2http://insideevs.com/real-world-test-2013-nissan-leaf-range-vs-2012-nissan-

leaf-range/
3http://www.nissan-techinfo.com/refgh0v/og/leaf/2013-nissan-leaf.pdf
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Table 5-1: Calculation of 2011 Nissan Leaf SOC window using EPA data [101]. The
EPA provides the maximum ranges of the Nissan Leaf when driven on both the
standard City and Highway cycle [4]. Since the battery was fully drained in these
tests, the resulting ranges provide a starting point for estimating the battery’s usable
energy. First, the unadjusted fuel economy values are converted to electrical energy
and a 90% correction for charger efficiency is used to find the battery electricity
consumption, in kWh per mile. This is multiplied by the range to find the total
energy consumed, then divided by the nominal capacity of 24 kWh to find the usable
SOC window. The results are self-consistent, since the SOC window is near 65% for
both drive cycles.

Drive cycle City Highway

EPA unadjusted fuel economy [MPG-equivalent] 151.5 131.3
EPA range [mi] 77.165 67.316

Battery electricity consumption [kWh/mi] 0.20 0.23
Total energy consumption [kWh] 15.4 15.55
% of 24 kWh nominal capacity 64% 65%

Figure 5-8: Comparison of histogram of travel energy requirements for batteries with
benchmarks for battery capacity.
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Table 5-2: Benchmarks for battery energy capacity, with corresponding tail fractions.
Sources for the energy targets are [90, 7].

Benchmark name current
battery
(Nissan
Leaf)

USABC
target
(total E)

ARPA-E
target
(specific E)

USABC
target
(specific E)

Energy benchmark [kWh] 16.8 45 58.8 69.09

GPS
Travel tail fraction 1.3% 0.1% 0.1% 0.0%
Distance tail fraction 15.5% 3.0% 1.6% 0.8%
Energy tail fraction 15.3% 3.1% 1.6% 0.9%

NHTS
trips

Travel 1.3% 0.2% 0.1% 0.0%
Distance 14.4% 3.4% 1.9% 0.9%
Energy 13.6% 3.2% 1.7% 0.8%

NHTS
days

Travel 17.4% 1.8% 0.9% 0.5%
Distance 48.6% 10.8% 6.6% 4.1%
Energy 47.0% 10.1% 6.1% 3.7%

at a specified discharge rate, comparing them with each other and with the Nissan
Leaf battery is reasonable because the power requirements for driving stay in a range
narrow enough to not significantly affect energy, as explained earlier in Subsection
4.3.3.

Total energy was calculated from the ARPA-E and USABC specific energy tar-
gets by multiplying by the 2011 Nissan Leaf’s battery pack weight, which is 294
kg. The total energy associated with the USABC specific energy target is different
from the USABC total energy target because the USABC’s set of targets implicitly
assume a smaller battery system mass of 191 kg. Both of these targets are used
in the analysis because they represent different contingencies with different battery
pack weights.

Table 5-2 indicates that tail fractions of energy are much larger than those for
travel only. This is because the longer trips have higher energy requirements, and so
carry more weight in the calculation of energy tail fractions. Distance tail fractions
are similar to those of energy, because of the similarity between trip distance and
trip energy.

Existing batteries can provide for a large portion of vehicle-trips. As shown
in Table 5-2, the NHTS vehicle-trip tail fraction of travel for current batteries is
1.3%. The energy associated with these trips accounts for 13.6% of the total energy
requirement for all NHTS vehicle-trips combined. Batteries that meet the targets
perform even better: the lowest energy target, USABC’s total energy target, falls
short of the energy requirements for only 0.2% of vehicle-trips, which account for
3.2% of energy.

On the other hand, existing batteries cannot provide for a significant fraction of
vehicle-days. The NHTS vehicle-day tail fraction of travel for current batteries is
17.4%. The fraction of total energy associated with these missed trips is much larger
- 47.0%. Batteries that meet the target significantly increase the fraction of possible
vehicle-days. By meeting the USABC total energy target, the usable battery energy
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is increased by three-fold, from 16.8 to 45 kWh, and the vehicle-day tail fraction of
travel is reduced to 1.8%. These missed trips account for 10.1% of energy. Meeting
the USABC specific energy target, which calls for a four-fold increase in usable
energy, would reduce the tail fraction further to 0.5%, which accounts for 3.7% of
energy.

As discussed earlier, the individual vehicle-trips that exceed the tail fractions are
long highway trips, uncharacteristic of regular commute trips. Vehicle-days above
the tail fraction, on the other hand, may consist of a mix of driving on highways and
surface roads.
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Chapter 6

Discussion

6.1 Contributions to travel energy modeling

This section explains the contribution of this research the study of energy require-
ments for vehicle travel. Specifically, it describes the ways in which our model can
improve on past methods for calculating the battery energy requirement of vehicle
trips in cross-sectional travel databases that contain only distance and duration trip
information.

6.1.1 Improved accuracy in travel energy estimation

The method presented in this thesis improves upon previous methods for estimating
the energy requirement for vehicle travel in three main ways: having a wider scope,
accounting for variations in drive cycles, and using real-world drive cycles. This is
accomplished by taking advantage of large GPS datasets that have recently become
available and large cross-sectional travel surveys.

The first advantage of our approach is that it retains the wider demographic
and geographic scope of the NHTS data. So far, GPS datasets have been limited in
geographic scope, so previous studies of vehicle energy consumption that use them
have been similarly limited [37]. The bootstrap procedure presented here offers a
way to incorporate information from GPS data into larger-scale cross-sectional travel
studies. With this new method, vehicle energy consumption is analyzed on a broader
scale, allowing conclusions to be made about nationwide battery performance targets.
In addition, this will enable comparisons of vehicle energy requirements between dif-
ferent geographic regions or market segments, which would be impossible using only
GPS data that is confined to smaller sample sizes and specific geographic regions.

The second advantage is that the method accounts for variation in energy inten-
sity with drive cycles, thus improving the accuracy of metrics that depend on the
distribution of energy, such as tail fractions. Previous studies have acknowledged
that energy intensity varies with drive cycle [37], noting that using a constant value
for per-mile energy consumption ignores variations due to traffic, higher accelera-
tion rates, and highway versus city driving. While these variations can be easily
accounted for in the GPS datasets that contain drive cycles, our contribution is to
offer a method that accounts for these variations when using cross-sectional travel
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surveys that cover larger geographical areas but lack detailed drive cycle information.
The variation in energy with respect to drive cycles is built into the distributions
of energy requirements shown in the results. This improves the accuracy of later
analyses, such as the evaluation of performance targets, over using a single value for
energy intensity, which would underestimate the spread in the distribution.

Finally, our estimates of energy consumption are closer to reality because they are
based on drive cycles obtained from real-world driving, instead being based on stan-
dardized or synthetic drive cycles. In the place of real-world drive cycles, previous
studies of the impact of variation in drive cycle on vehicle energy consumption have
used either standardized cycles from different countries [47] or synthesized natural-
istic drive cycles [55]. Previous analyses using only GPS data have been limited by
sample size [6]. The approach present in this thesis takes advantage of the real-world
drive cycles from large-sample GPS travel surveys that are now available, which are
a better representation of reality than the standardized or synthetic drive cycles.

6.1.2 Appropriate application of the travel energy model

The method presented in this thesis estimates travel energy requirements based on a
single vehicle and a cross-sectional dataset of vehicle-trips, which makes the results
suitable for certain applications but inappropriate for others. The results can be
interpreted as the distribution of the Nissan Leaf’s vehicle-day energy requirements
for all vehicle-days driven in the US in 2009.

Importantly, the results can be used to estimate the fraction of vehicle-days that
can be driven by the 2011 Nissan Leaf, but not the fraction of vehicles that can
be replaced. The results indicate that the 2011 Nissan Leaf can satisfy the energy
requirements of 83% of vehicle-days, but it would satisfy a smaller proportion of
the lifetime energy requirements of vehicles. A longitudinal study would be required
to address such questions [73]. For example, an existing gasoline vehicle could be
replaced by an EV only if the EV can meet nearly all of the vehicle-day energy
requirements over the lifetime of the vehicle. The NHTS data is cross-sectional, as
opposed to longitudinal, so it lacks the information about the variation in vehicle-
days experienced by a single vehicle over its lifetime.

Therefore, these results could apply to vehicle sharing programs, but not to
the modeling of vehicle purchases. Vehicle sharing programs are an example where
looking at vehicle-days independently of vehicles makes sense, because a traveler can
decide to use a shared vehicle if that vehicle can meet the energy requirement for
the intended trip, regardless of the other trips the shared vehicle takes over time.
On the other hand, evaluating the trip energy requirements for a particular vehicle
over time is important when considering what existing vehicles can be replaced by
EVs, because it is a factor in vehicle purchase decisions.

Another application of the method is for the analysis of hypothetical scenarios,
which can be useful for policy, as will be discussed in Section 6.2. The results
represent the hypothetical maximum utilization of a given vehicle, and not the actual
energy consumed over the trips recorded in the NHTS. The distribution of energy
requirements is calculated using a single electric vehicle, and not the variety of
vehicles that were actually used for the recorded trips. In particular, the model
estimates the proportion of vehicle-trips that can possibly be achieved by a specific
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vehicle and vehicle battery. The results represent the contingency of maximum
utilization of the vehicle, in which it is used for all trips it can satisfy. The actual
utilization of the vehicle achieved in the real world would be influenced by additional
factors such as consumer purchasing decisions and vehicle stock turnover rates.

6.2 Contributions to evaluating technologies and policy

This section discusses the implications of our method on performance targets. There
are three quantities that will be compared to each other in this section: performance
targets, current technology, and the requirements for travel. Tail fractions, as defined
in Section 5.3, are used as the basis for these comparisons, because tail fractions
translate battery energy capacity metrics into the physical performance metrics that
consumers and policymakers are most concerned with.

The following discussion of performance targets focuses on vehicle-days as the
unit of analysis, because they correspond to the energy requirements of full days of
driving with overnight charging only, which is how EVs will likely be used, due to
the inconvenience of charging between trips. The focus will be on the targets for
specific energy and total energy, because these quantities are the most important
determining factors of EV performance, notably all-electric range, as explained in
the Background in Chapter 2.

6.2.1 Evaluation of existing performance targets

The existing performance targets call for a substantial increase in battery energy ca-
pacity, which leads to an increase in the amount of vehicle-days that can be achieved.
The ARPA-E and the USABC specific energy targets are 3.5 and 4.1 times the 2011
Nissan Leaf battery’s usable specific energy. As shown in Table 5-2, the Leaf’s
battery cannot provide for 17.4% of vehicle-days, whereas a battery that met the
USABC specific energy target would only fail to provide for 0.5% of vehicle-days.
Having battery technology that meets the targets would enable EVs to be used for
a greater proportion of vehicle-days, which would reduce the use of gasoline vehicles
and potentially reduce CO2 emissions.

The benefit from meeting performance targets is even greater when measured
in terms of energy. The 17.4% of vehicle-days that the Nissan Leaf battery cannot
provide for accounts for 47% of all energy spent in personal vehicle travel. A battery
that meets the USABC specific energy target would reduce the tail fraction of energy
for vehicle-days from 47% to 3.7%.

The results show that there is significant room for improvement for current bat-
teries. While the Nissan Leaf can satisfy most vehicle-days (82.6%), they satisfy
a smaller proportion of energy (53%). The ability of EVs to offset gasoline usage
would be improved with better batteries that provide more range. A battery that
meets the USABC specific target could potentially provide for a high proportion of
personal vehicle trips and energy (96.3%).

Based on this analysis, the existing performance targets are appropriate. The
targets are high enough such that, for batteries that meet the targets, the potential
for offsetting petroleum use would not be limited by technology performance but by
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adoption rates. For example, an EV with a battery that meets the lowest target, the
USABC total energy target, would be able to electrify up to 98% of vehicle-days in
the US, which account for 90% of energy consumption. A larger portion of vehicle-
days would be possible with access to public charging stations. Therefore, if EV
batteries met one of these targets, the main obstacle to offsetting petroleum use with
EVs would not be whether EV performance meets the needs of the trips driven, but
whether consumers are willing to purchase EVs to replace existing gasoline vehicles.

Even though the existing targets call for an aggressive increase in usable energy
capacity (a three- to four-fold increase), the targets are not too high. There are
trips whose energy requirement is higher than the target, meaning that the target is
not so high that the additional energy capacity would never be used during driving.
Rather, all of the additional usable energy that the targets call for contribute to
increasing the number of possible trips for the battery. However, since only a small
amount of trips require large amounts of energy, a more careful assessment of the
appropriateness of targets would need to consider the real-world trade-offs in meeting
high targets for energy capacity.

6.2.2 Trade-offs in setting performance targets

In addition to evaluating existing targets, an important question to ask is, “how
high should the specific energy target be?” Our model helps to design more effective
performance targets because it provides more information to help deal with the
inherent trade-offs.

The marginal benefit of additional battery capacity decreases with larger battery
capacity. The CDF of the distribution of energy requirements is increasing quickly
near the Leaf’s energy capacity, but it increases much less quickly near the targets.
This is why large improvements in tail fraction can be achieved in moving from the
Leaf’s energy capacity to the target values, but further increases in energy above the
targets will have small effect.

In addition to having reduced marginal performance benefits, high targets for
energy capacity also incur opportunity costs, because prioritizing the meeting of a
high specific energy target may reduce performance in other goals like cost, longevity,
or safety. At some point, the cost of having high energy capacity outweighs the per-
formance returns. Tail fractions calculated with our model provides the information
about the marginal performance benefits that is required for such an analysis. Tail
fractions of energy can be converted into a quantity of gasoline that is offset, and
then into CO2 emissions prevented, which is a quantity that is easier to use in policy
analysis.

6.3 Future work

This section offers ideas for improvements that can be made upon this work. There
are several opportunities to improve the accuracy of the travel energy model and to
adapt the model for other applications.
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6.3.1 Improving accuracy with vehicle simulation software

The accuracy of the model for battery energy requirements could be improved by
using simulation software that can accurately model an electric vehicle. Instead of
using the empirical formulation of tractive energy and a cycle-averaged powertrain
efficiency, battery energy requirements could be directly calculated with the simula-
tion for each GPS drive cycle. The conditional bootstrap procedure would still be
used to match the GPS energies with the NHTS trips.

The advantage of using a simulation to calculate energy is that it can provide
more accurate calculations because it uses detailed component efficiency maps, which
calculate efficiency of vehicle components efficiency depending on the instantaneous
operating condition. These detailed component efficiency maps give the efficiency of
a particular component (e.g. electric motor) over a range of performance situations,
such as rpm or torque. The efficiency maps and other aspects of the simulation
provide a more accurate estimation of powertrain efficiency, and intrinsically account
for how powertrain efficiency changes with drive cycle.

One difficulty of implementing such a simulation is tuning it to accurately repre-
sent reality. For example, energy consumption estimated by the default EV model
in the ADVISOR simulation, designed in 2003, doesn’t match up well with EPA’s
measurements: the simulation predicts that more energy is consumed in the City
cycle than the Highway cycle, but in reality the opposite is true. The subtleties of
real-world operation, such as regenerative braking efficiency or auxiliary power load,
must be accounted for to create accurate results.

6.3.2 Accounting for elevation change in tractive energy

While elevation change is neglected in the current model, slight improvements to
accuracy could be realized if it were properly accounted for. If GPS drive cycles
contained elevation data, a method could be devised to account for this factor. A
new term to account for change in potential energy, 𝑚𝑔∆𝑧, would need to be added
to the tractive energy formulation.

The typical size of the 𝑚𝑔∆𝑧 term can provide a sense of the the impact of
elevation change on tractive energy requirements. Consider a trip from Albuquerque
to Santa Fe, which is about 60 miles long and has an elevation gain of about 600
meters. Using the EPA’s reported energy intensity for the 2011 Nissan Leaf of
0.34 kWh/mi and disregarding the elevation change, the energy required for the trip
is 20 kWh. The Leaf’s mass is 1525 kg, so 𝑚𝑔∆𝑧 = (1525 kg)(9.8 m/s2)(600 m) =
2.5 kWh. Thus, the elevation gain would add about 10% to the tractive energy
required. Similar calculations for shorter trips in hilly cities (e.g. San Francisco)
show that elevation gain can contribute up to 25% to trip energy requirements.

The expected impact of accounting for elevation change on the distribution of
vehicle-trip energy requirements would be to increase the spread of the distribution,
because the energy requirement would be increased for uphill trips but decreased for
downhill trips. However, the impact on vehicle-day energy requirements is unclear,
because most vehicle-days start and end at the same location, and the positive and
negative contributions of elevation change would cancel out. Therefore, while the
impact on individual trip energy requirements could significant, the size of the impact
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on metrics like vehicle-day tail fraction is unclear.
In addition, the effect of elevation on energy use could be larger when compar-

ing different regions, because differing geography could create systematic differences
in trip energy requirements between regions. Previous studies have incorporated
other factors to improve regional energy estimates, such as accounting for regional
variations in weather1.

6.3.3 Sensitivity to different vehicle parameters

The conclusions in this thesis are based on the analysis of a single vehicle, the
2011 Nissan Leaf. To make a more accurate assessment of the performance level of
electric vehicle batteries, the model should account for variations in vehicle design
that would affect either tractive energy or powertrain efficiency. For example, heavy
vehicles would require more energy capacity for the same performance as lighter
vehicles.

The model presented in this thesis would be easy to adapt to other vehicles.
The EPA Test Car data files have dynamometer coefficients for all commercially
produced vehicles, providing the data required to model tractive energy requirements
and powertrain efficiency of other vehicles. A sensitivity analysis could be performed
to determine the sensitivity of the tail fractions to changes in vehicle parameters.

6.3.4 Evaluation of performance targets for PHEV batteries

The method proposed here could also be adapted to study PHEVs and performance
targets for PHEV batteries. PHEVs are important to study because they, like BEVs,
can operate with zero tailpipe emissions, albeit with a shorter all-electric range. In
addition, because PHEVs are more appealing to US drivers and are sold in greater
numbers, they may have a greater overall climate change mitigation potential.

The all-electric range of PHEVs could be analyzed using the same method used
in this thesis. The model would need to be modified to account for the additional
complexity of PHEV battery usage, such as accounting for the possibility of charge-
sustaining operation and variation in control strategies. Notably, PHEVs would be
able to offset portions of long trips whose total energy requirement is greater than
that of the battery, by operating in all-electric mode and then switching to gasoline.
Because PHEVs have smaller batteries than BEVs, the sensitivity of the tail fraction
of trips satisfied in all-electric mode would be greater. Our method would offer
similar improvements in accuracy in estimating tail fractions, compared to previous
studies [47].

1http://www.eia.gov/consumption/residential/pdf/046405.pdf
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Chapter 7

Conclusion

This thesis addressed the question, “are current targets for energy capacity of EV
batteries high enough to meet the demand for travel, based on large datasets on
driving habits?” A new method was presented for estimating energy requirements
for personal vehicle travel, based on large cross-sectional travel surveys, and it was
used to evaluate existing performance targets for battery specific energy. The results
indicated that current batteries can satisfy 83% of vehicle-days, which account for
53% of all energy consumed in personal vehicle travel, while batteries that meet
the performance targets can satisfy 98 to 99% of vehicle-days, which account for 90
to 96% of energy. Based on these results, existing performance targets for electric
vehicle batteries were evaluated and determined to be appropriate. Importantly,
these results can be used to quantify the benefits of meeting performance targets,
and can help assess technology readiness and guide allocation of research funding.
These quantitative results may be updated in a forthcoming paper [61].

Accurate assessment of technologies require detailed understanding of both the
technology and the context in which it is used. In the case of electric vehicle batteries,
studies that focus on aggregate metrics of transportation, such as sector-wide energy
consumption or emissions, often use a constant per-mile vehicle energy consumption.
This approach is insufficiently fine-grained provide accurate estimates of EV range,
or distributions of energy requirements, because they do not adequately address
the variation in energy experienced in real-world driving. This thesis developed an
innovative method that combines a detailed vehicle model with a statistical method
that combines GPS data with large-scope data. This method is useful for both
designing new performance targets and evaluating existing ones.

EVs are important for reducing CO2 emissions in the personal vehicle sector,
so people that create policy to address this subject should be careful to apply the
right methods. Estimates of technology performance obtained from appropriate
methods will be more accurate, which would improve policymaking through effective
allocation of money and effort, and improve the chances of meeting policy goals, such
as segmental emissions reduction targets [89]. If performance targets are created
using sound methods that accurately represent reality, they can be effective guides
for battery research and funding, and ultimately aid in making a more efficient
transition to a cleaner transportation sector.
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