EFIDude Pass Through FAQ and General Information

This is provided as a free service by me and, like the VB6 sample, is provided without warranty or any kind. Please feel free to contact me at bill at lolachampcar dot com should you have any questions. I'll try to answer promptly and probably put your question and its response in the FAQ.

Where can I find documentation on the EFIDude Pass Through device personality?

The Pass Through personality for the EFIDude dongle is a free option offered at my request by the guys at EFIDude. I knew the dongle could be used as a simple USB2 to CAN communication device and I asked the guys at EFIDude to add this personality to the list of things the dongle could be configured to do. As a "freebee", it is not supported by EFIDude and thus I am afraid you are stuck with my sample program, the excel sheet outlining the command set and this FAQ.

What do you mean by "personality"?

ProTune is the PC side application that supports the EFIDude hardware dongle via USB. It allows you to download and view logged data along with downloading files to the dongle for reflashing the RX-8's PCM. Given that the logging and reflashing are two completely different functions, the EFIDudes decided to simply reprogram the dongle each time they wanted it to do a different function. This reprogramming for different functions is called "putting a personality" on the dongle.

Can the dongle's firmware be field upgraded?

Yes, it can and is on a regular basis in about 10 seconds. ProLogger (the PC application) phones home every time it opens and has and your PC has an internet connection. You will notice that the application updates itself quite often these days as new features are being tested and added at a fast rate. The personalities are wrapped up in the application and thus are updated as well. You will notice that the pass through personality will magically show up in ProTune as an option one day following an update.

What is the dongle when it has a Pass Through personality?

The dongle is simply a high speed USB to CAN link when in Pass Through mode or personality. The USB microcontroller just sits in a command handling loop that allows the PC to "talk" to the MicroChip MCP2515 CAN transceiver. In addition, the USB microcontroller preconfigures the CAN transceiver for 500 Kbits/sec communication (using a 16 MHz crystal) using standard data length CAN packets suitable for OBDii compliant communication. You can do a Google search for "Wiki OBDii PiD" to learn more about OBDii compliant communication. The transceiver is also configured to "speak" to 7E0 and "listen" for 7E8. These are the hex address of an OBDii compliant PCM (7E0) and hand held tester (7E8). The USB microcontroller also maintains two circular buffers that support the CAN transceiver, one for transmit and one for receive. There is an interrupt line between the CAN transceiver and microcontroller that notifies the microcontroller when a valid CAN packet has been received in one of the two CAN reception buffers. The microcontroller will then read the data from the CAN transceiver, place it in the 256 byte Rx circular buffer and increment the Rx Data Write Pointer. The user maintains the Rx Data Read Pointer. When data is available, the Rx Data Available flag will be set in the status register. The user must clear this flag when he/she acknowledges the data. Likewise, the user places data in the Tx circular buffer, sets the Tx Write Data Pointer and sets the Tx pending flag in the status register. Setting the Tx pending flag tells the microcontroller to write data from Tx Read Data Pointer to Tx Write Data Pointer. The microcontroller will increment the Tx Read Data Pointer as it sends data down the CAN bus. Both read and write operations are in eight byte CAN packet form.

What does a CAN packet look like when you are talking to a car?

The physical CAN packet is always 8 bytes long. These bytes are Number of Data Elements, Mode, Command/Data1, Command/Data2,,,,,. You can pack unused bytes with zeros or FFs if you like but you must configure the Tx buffer and pointers in 8 byte chunks. The simplest way to see an example of this is to use my sample VB6 code to manually do the following-
Read Rx Buffer

Clear Rx Buffer

Read Rx Buffer (and notice the Rx Read and Write Pointers)

Load the Tx Buffer (lower left) which will place 2, 21, 0, 0, 0, 0, 0, 0 in the transmit buffer and set the Tx pointers to 0 and 8.

Read the Tx Buffer to confirm the above

Click the Set Tx Pending flag button

If you are connected to a PCM, this will ask for the ViN

Read the Rx Buffer and you will see the PCM's response

Click the Read Status button (upper left) and you will see the location of the Rx data in the Rx Data Pointers (starts at zero as you cleared the Rx buffer above)

Read the Tx Buffer again and you will see that 30, 0, 0, 0, 0, 0, 0, 0 has been added to the Tx buffer and the pointers have changed. This is the auto continuation function of the microcontroller where it automatically sends a continuation message to the PCM when the PCM sends a multi packet message to the dongle. You'll have to read up on OBDii compliant CAN communication to better understand this whole mess but suffice it to say that the process works.

The fetch ViN, Packed PiD 1 and Packed PiD 2 examples basically automate the above steps.

Can I use the Pass Through device for not automotive CAN communication?
Yes, but if you thought you were not well supported with the OBDii communication, you are really going to feel left out in the cold on this one. There is a write CAN Register function in the VB6 application along with a Read CAN Registers function. With this, and a MicroChip MCP2515 data sheet (available from MicroChip or the Digikey web sites), you can access and muck with any registers you want including interrupt sources, transmit headers, receive buffer filters and CAN bus timing. Once you head out in this direction, you are pretty much on your own as CAN communication is very robust but not intuitively obvious. Good luck.
